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L O Micro- and macroscopic aspects of large-strain deformation are examined through
w analyses of shear by using physical and phenomenological models. Past experiments

and analyses are first reviewed to reveal current issues and put the present work in
perspective. These issues are addressed by a complete set of simulations of large-strain
shear with a finite-strain, rate-dependent polycrystal model. The model is based on
a rigorous constitutive theory for crystallographic slip that accounts for the
development of crystallographic texture and the effects of texture on constitutive
response. The influences of strain hardening, latent hardening, strain-rate sensitivity,
boundary constraints, and initial textures on texture evolution and constitutive
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444 S. HARREN AND OTHERS

response are studied. Coupled stress and strain effects such as axial elongation during
unconstrained shear and the development of normal stresses during constrained shear
are related to material properties, boundary constraint and texture. The formation
of ideal textures and their role in determining polycrystalline behaviour is discussed
in quantitative terms. Large-strain shear is also studied by using several phenomeno-
logical constitutive theories including 'J,-flow theory, J,-corner theory, and two
versions of finite-strain kinematic hardening theory. The behaviours predicted by
these phenomenological theories and the physically based polycrystal model are
directly compared. A noteworthy outcome is the close correspondence found between

< the predictions of J,-corner theory and those of the micromechanically based physical

:é model. '

—

olm

M 1. INTRODUGTION

29} 5 Large-strain deformation behaviour of metals and alloys is commonly studied by experimental

O and theoretical analyses of shear. The aim of the experimental studies is to document strain
Yy P

=

hardening at large strains, thus providing a base for developing more complete, and physically
sound, constitutive laws. Recent work has additionally been aimed at correlating initial
microstructures, along with the evolution of microstructure and texture, with multiaxial large-
strain response (see, for example, Hecker & Stout 1982; Budiansky et ali 1951; Montheillet
etal. 1984 ; Hughes 1986). This ambitious yet vital approach is new, and comprehensive studies
of even microstructurally simple ‘model’ systems have yet to be completed. The present work
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is specifically aimed at contributing to the theoretical framework for guiding such experimental
studies, interpreting them, and formulating rigorous three-dimensional constitutive theories for
strain-rate-dependent materials deformed to arbitrarily large strains. Such a framework is
necessary because of the complexity of the observed behaviour and the difficulty in
representing it with continuum constitutive laws.

Shear deformation, in particular through torsion, is used to achieve large strains because of
the inherent geometric stability of this state. None the less, the phenomenology is complicated
and intepretation requires theoretical study using models that account for the effects of
boundary constraint and material properties such as texture, strain-rate sensitivity, and strain
hardening. In the present work the phenomenology of large-strain shear is studied in detail.
Axial effects which accompany shear, such as the development of normal strains or stresses, are
emphasized because they are experimentally observed to depend sensitively upon material
properties. Consequently, these effects provide a focus for testing theoretical models of material
response. A recently developed polycrystal model based on strain-rate-dependent crystallo-
graphic slip is used to explore the influence of crystallographic strain hardening, latent
hardening, and strain-rate sensitivity on the overall shear behaviour. The model can only be
implemented numerically and thus the results are those of a number of large computer
simulations. The influence of material properties on texture evolution and full constitutive
response is studied: a number of novel correlations are made concerning the role of texture,
strain-rate sensitivity, strain hardening, and boundary constraint on shear behaviour. In
addition, shear behaviour is studied by using various phenomenological theories that are
‘calibrated’ against the physical (slip) theory. The intent is to distinguish between features of
shear deformation that can be described by using classical constitutive relations, recently
proposed phenomenological models, and the more detailed crystal plasticity model.

The plan of the paper is as follows. In §1.1 previous experimental and theoretical work on
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the shear problem is reviewed to help put our new work in perspective. Section 1.2 presents two
classical descriptions of large-strain shear response: that afforded by J,-flow theory with
isotropic hardening and that of an isotropic hyperelastic (deformation theory) constitutive law.
In §2 the crystal constitutive theory and the polycrystal physical model are described. A set of
homogeneous boundary value problems is presented in §2.2; we will use this set to model
various aspects of polycrystalline shear. Grain distributions and ‘ideal’ textures are described
in §§2.3 and 2.4. Numerical results are described in §3. In §4 the predictions of the physical
model are compared to those of several recently introduced phenomenological theories:
Jy-corner theory and two versions of large-strain kinematic hardening theory. Also in §4,
discussion and interpretations of the results are presented. In all of what is presented we have
tried to be comprehensive in laying out micromechanical, crystallographic, and continuum
phenomenological aspects of the shear problem in the hope that the present paper might
provide a conceptual and mathematical framework for future experimental and theoretical
studies. :

Standard mathematical notations are used throughout. Vectors and higher-order tensors are
denoted by bold-faced symbols, the orders of which are clear in context. Products are written
in diadic notation, e.g. with e,, e, and e, representing a set of orthonormal base vectors,

B-C=B,C,ee, B:C=B,C,
BC = B,;C ¢e.e,e,¢ aa = a,aee,
A':B = A Bree; B:A = B, A, e.e,

Summation over Latin indices is implied whereas summation over Greek indices is explicitly
indicated. Superposed dots are used to denote time derivatives, e.g.

. D
B=5(B,e.e).

1.1. Perspectives on past work

Experimental and theoretical studies of shear deformation have examined the axial effects
that accompany shear. These effects are readily observed in torsion as a small change in length
or as axial stresses that develop during twisting. This behaviour has been observed at small
elastic strains by Poynting (1909), and at very large plastic strains by Swift (1947), Billington
(1976), and Montheillet et al. (1984). Identification of the small-strain effect has been
attributed to Poynting (1909) who first observed it in wires of steel, brass, and copper. In the
present paper, our principal interest is in the large-strain effect, sometimes referred to as the
‘Swift effect’ (Swift 1947). Most of the experimental measurements and analytical results
discussed in the following section will be re-evaluated in the context of the model calculations
in later sections.

1.1.1. Axial effects in shear : mechanical measurements

Swift (1947) initially investigated length changes in rods and tubes of brass, aluminium, steel
and copper during large-strain torsion. The influence of specimen geometry and material
properties upon these changes were examined in some detail. From his work, and subsequent
measurements by others, it has been shown that most initially isotropic metals tend to elongate

33-2
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446 S. HARREN AND OTHERS

during torsion when the specimen’s ends are free, or to develop compressive axial stresses when
the ends are fixed. The magnitude of the elongation varies between metals but is typically of
the order of 109, for a shear strain of 3. Although a near-parabolic relation between shear
strain and axial strain has been most often observed, Swift found that the ratio of axial strain
to shear strain was constant and approximately 0.03 for brass and stainless steel. He also noted
that tests using tubes showed as much as 50 %, more extension compared to similar tests on solid
rods. Billington (1976) and Ronay (1968) also observed greater extensions in thin-walled
cylinders than in solid rods. In addition, in Billington’s experiments, the rate of axial extension
decreased dramatically when his thin-walled cylinders contracted enough radially to contact
an inner plug. Stout (1984) observed similar behaviour in thin-walled tubes of brass into which
a mandrel was inserted during torsion. In each case the plug, or mandrel, constrained the axial
effect in the same manner that it was constrained during torsion of solid rods. Ronay (1966)
observed a similar dependence of the magnitude of the Swift effect upon specimen type in fixed-
end torsion experiments. The compressive stresses in a tube with fixed ends were typically twice
as large as those estimated at the outer radius of the comparable solid rod. In §3 we
demonstrate how constraints that prevent contraction in the shearing direction, which would
prevent hoop strains in the case of torsion, nearly eliminate axial strains.

The effect of strain hardening on axial effects was judged to be of great significance by Swift
(1947). His experiments showed the largest axial elongations in metals having the strongest
strain hardening. For lead, which showed essentially no strain hardening at intermediate
strains and room temperature, his sample contracted. Swift’s conclusion that axial elongations
were related to strain hardening was contradicted by the experiments of Billington (1976) who
observed continuous elongations in iron independent of the hardening. Montheillet et al.
(1984) suggested that the development of compressive axial stresses for ‘fixed-end’ torsion
could be associated with the high rates of hardening observed at small strains and low
temperature. Similarly, they associated observed tensile stresses during torsion with the
negligible hardening rates observed at very large strains and intermediate temperature. The
effect of work hardening upon axial stress response will be treated in §3 by using the crystal
plasticity model. There it is shown that strain hardening per se affects the magnitude of the
normal stresses (in much the same way as it affects the increase in shear strength) while
leaving the qualitative trends exhibited by these stresses essentially unaffected.

Although there exists no systematic study of the effects of initial texture upon the Swift effect,
axial effects have been compared in copper twisted in the as-received condition and after heat
treatment at 550 °C for 16 h (Billington 1976). Axial extension was much smaller in the heat-
treated copper, which presumably had a more nearly isotropic texture because of annealing or
recrystallization. Swift prestrained mild steel samples by 189, in tension before twisting. He
found that these samples contracted axially before extending like unprestrained samples.
Similar axial contraction transients were observed following reversals of the twisting direction
by Swift (1947) and others (see, for example, Gil-Sevillano et al. 1975). We have simulated
Swift’s reverse torsion tests using the rate-dependent polycrystal (crystal plasticity) model and
the results are presented in §3. We indeed find that there are transient axial contractions and
the phenomenology is quite similar to that reported by Swift although the magnitudes of our
calculated strains are much higher. This may also be because of the effects of the constraints
that act on the specimen as noted above. Aside from these transient contractions, however,
axial strains have been found by experiment, and our calculations, to be cumulative,
independent of the direction of shear.
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Strain rate dependence of the Swift effect has been investigated through experiments done
at different strain rates and temperatures. Billington (1976) compared high-rate torsion
measurements (100 s™! < ¢ < 1000 s™!) with quasi-static torsion data and concluded that no
axial effects occurred at very high strain rates. Montheillet et al. (1984) examined a lower range
of shear rates and found that the axial forces changed with rate. The ratio of axial stress to shear
stress increased with strain rate in aluminium deformed at 200 °C but showed no systematic
variation in copper deformed at 300 °C. However, there was a clear trend for this ratio to
decrease with increasing temperature for both aluminium and copper. This decrease in the
magnitude of the Swift effect at higher temperatures was accompanied by a tendency for axial
tensile stresses to develop at large strains. Furthermore, the data of Montheillet et al. show that
the amount of strain required before axial stresses change from compression to tension decreases
with increasing temperature. An explanation for the dependence of the Swift effect upon
temperature was suggested by them in terms of the effects of temperature upon texture
development. Tensile axial stresses developed at elevated temperatures have also been reported
by Swift (1947), Portevin (1970) and Hughes (1952). The experiments by Portevin using
chromium steels showed that the tensile and compressive stress transients during hot torsion
were dramatically affected by variations in the chromium content and the corresponding
variations in microstructure. One might speculate several origins of these variations: changes
in stacking fault energy, crystal structure, or phase composition could each be significant. This
level of microstructural detail is not addressed in the present study because of a lack of sufficient
experimental documentation.

1.1.2. Axial effects in shear : deformation-induced textures

1.1.2.1. Ideal torsion textures. The ideal textures that result from torsion can be derived from
the symmetry of shear and the physics of slip. As suggested by van Houtte & Aernoudt (1976),
the symmetry of torsion requires that these textures (hereafter referred to as torsion textures)
be centrally symmetric about the radial direction (i.e., independent of a 180° rotation about
the radial direction). Canova et al. (1984) have classified three texture components based upon
considerations of the geometry of shear and crystallographic slip: a partial A-fibre texture
A, having {111} planes normal to the axial direction, a partial B-fibre texture B, having (110)
directions aligned with the shear direction, and a C-texture, which is the discrete orientation
within the B-fibre that has a cube direction aligned with the torsion axis. These components
are referenced below to describe experimental textures and are illustrated in our computed pole
figures. A more thorough discussion of ideal torsion textures is presented in §2.4.

1.1.2.2. Experimental torsion textures. X-ray measurements of shear textures have been
reported by several investigators (see Montheillet ez al. 1984 ; Aernoudt & Gil-Sevillano 1973;
Backofen 1950; Gibbard 1951; van Houte & Aernoudt 1976; Backofen & Hundy 1953;
Williams 1962). In general, combinations of the ideal C-texture and components of the
A-texture have been reported in copper, aluminium, and brass. Other textures have been less
commonly reported. The relative intensities of A,, B,, and C-textures differ between materials
and vary with strain, temperature, and prior texture. However, because of the complexity of
shear textures and the limitations of pole figure measurements, it is difficult to resolve the
sometimes subtle texture characteristics that influence axial effects. Nevertheless, some
significant observations are noted which will be discussed later along with our model
predictions. Measurements of Williams and Backofen & Hundy demonstrated that the pole
figures were, as deduced by van Houtte & Aernoudt (1976) centrosymmetric. Looking ahead
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to the {111} pole figures presented in §3, we note they are most usefully plotted such that the
pole of the shear direction lies at the outer right on the perimeter and the normal to the
shearing direction lies at the top pole (see, for example, figure 3). In this orientation
centrosymmetry implies that opposing quadrants such as the first and third are identical, as are
the second and fourth. During simple shear along the positive x,-direction the principal
directions of the rate of deformation lie at 45° clockwise to the vertical axis; thus orientations
in the second and fourth quadrants are shortened and orientations in the first and third
quadrants are lengthened. Textures produced by positive and negative shear should therefore
exhibit mirror symmetry with respect to each other on such a {111} pole figure with the radial
direction at the centre.

A dependence of axial effects upon texture was suggested by Montheillet et al. (1984) in
connection with their experiments. They interpreted axial effects in terms of their reported
observations of rotations of the ideal texture components about the radial direction, as
suggested by the analyses of Gil-Sevillano ez al. (1975). Note that they use the notation ‘A’ and
‘B’ to designate discrete crystallite orientations within the A; and B, fibres, respectively. ‘A’
refers to {171} (110 orientations and ‘B’ refers to {112} {110} orientations. At low strains and
low temperature, the development of compressive axial stresses in rods of aluminium and
copper was attributed to rotations of A- and C-ideal textures opposite to the sense of shear.
Similarly, at high strains and intermediate temperature, the development of tensile axial
stresses was attributed to rotation of the A-component of ideal texture in the same sense as
shear. At higher temperatures the absence of axial forces was attributed to the increasing
presence of the B-texture and the decreasing intensity of the A-texture. In a later paper the
effects of these textures and their rotations upon axial stresses were quantified by Montheillet
et al. (1985) in a phenomenological model. However, the effects of temperature upon texture
development have not been explained except at high temperatures where the influence of
dynamic recrystallization is obvious. Also, the effects of sample geometry, torsion boundary
conditions (fixed against free end), and strain-rate sensitivity upon texture development have
not been assessed even though these parameters are known to strongly influence the Swift
effect. These effects will be considered in the present calculations. A noteworthy outcome of our
calculations is that we find that the unrotated ideal partial A,-fibre texture itself produces a
tensile force in the case of fixed ends. This may provide a simple explanation of tensile stresses
in cases where this component becomes dominant. However, looking ahead to our numerical
results in §§3.1 and 3.2, we find that the maximum axial tensile stresses occur at stages in the
deformation where the intensity of the Aj-fibre is decreasing and is no longer dominant. As will
be explained in §4, these maxima result from large numbers of grains with orientations outside
of the ideal texture orientations. On the other hand, we find no rotations of the textures
following shear with fixed ends. When the shear is unconstrained, however, and normal strains
are allowed texture rotations do occur.

1.1.3. Axial effects in shear : theoretical analyses

The elongation of metals during shear has been described in both continuum models and
strain rate independent Taylor-like models of deformation. Analyses with continuum
phenomenological constitutive models by Poynting (1909), Hill (1950), Nadai (1950), Rivlin
(1953), Ronay (1967, 1968), Billington (1976) and Van Arsdale ¢t al. (1980) have shown that
axial extensions or compressive axial stresses should be expected during torsion. This is
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illustrated in the next section with a hyperelastic constitutive model. In these models, the
prediction of axial effects is derived from several different arguments. Poynting (1909) used a
simple geometric model to show the directions of maximum extension and contraction during
simple shear. He then determined the stress state required to satisfy equilibrium given a small
elastic shear strain. The axial extension in the absence of an axial force is then found by
superposition of equilibrium states. Rivlin (1953) considered several torsion problems using
second-order elasticity theory. He also used superposition to compute axial extension from a
solution for fixed length. Billington (1976) considered inelastic torsion of an isotropic,
incompressible strain hardening material by using the large-strain deformation theory of Hahn
(1974). This approach yields axial effects that are entirely geometric in origin, just as found
in the above elastic analyses. Van Arsdale e al. 1980) also treated inelastic torsion, but used
the constitutive relations of Hart (1976). Hart’s model includes an internal stress tensor
variable. Axial effects are found to result entirely from the rotation of this tensor because of the
material rotations that occur during torsion. All of these analyses, based on simple
phenomenological models, predict an increasing axial strain or stress with increasing shear
strain, but never the complex trends that have been observed experimentally, especially by
Montheillet et al. (1984). -

Some of these models approximate certain aspects of the Swift effect. For twisting with free
ends, Van Arsdale ef al. (1980) and Poynting (1909) predicted the near-parabolic relation
observed between axial strain and shear strain at strains less than unity. The effects of torsion
specimen wall thickness upon the Swift effect were treated theoretically by Rivlin (1953) and
Ronay (1968). It was shown that axial effects increase with decreasing wall thickness and that
in the limit, the axial stress in an ideal thin-walled cylinder will be twice that of a solid rod.
These analyses assumed an ideally plastic material. In the present work geometric effects and
the effects of work hardening will be considered. ,

Taylor-like deformation models (including the present model) account directly for grain
rotations and the resulting textural anisotropy which strongly influences the Swift effect. In the
past this calculational approach has been only marginally successful in the modelling of axial
effects in shear such as the texture rotations reported in the experimental measurements by
Gil-Sevillano et al. (1975). The present model has been much more successful in comparison
where such rotations are a dominant feature of the calculated textures when normal strains
are allowed to develop. This success is directly attributable to our mixed boundary value
formulation of the problem. Montheillet ¢¢ al. (1985) used a hybrid approach to calculate axial
stresses due to individual texture components and their rotations about the radial direction.
They found that the A, B, and C-textures do not of themselves produce axial stresses. However,
when rotated, the A and C-textures produce axial effects that depend upon the direction of
rotation. The B-texture produces no axial effect regardless of rotation. For negative torsion
with fixed ends (which corresponds to simple shearing in the negative x,-direction) the self-
symmetric {111} {112) and {111} {112) components of the A-fibre have opposite effects, the
former always causing tensile axial stresses and the latter always causing compressive axial
stresses. These results (rotations aside) are consistent with the ideal texture calculations
presented in §3. By using the quantitative results of their model, the complex axial stress
histories and corresponding texture evolution measured by Montheillet et al. (1984) were
reconciled in terms of the relative intensity and rotations of the ideal texture components. A
similar analysis will be presented based upon the present model calculations.
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1.2. Large-strain shear for classical constitutive relations

In this section we introduce the shear problem to be studied and provide solutions to it for
materials obeying two simple constitutive laws, namely an isotropic hyperelastic theory and
Jy-flow theory with isotropic hardening. This provides additional pespective on the model
results described in §3.

For the circular cross sections widely used in the torsion testing of ductile metals at finite
strain, torsion gives rise to inhomogeneous simple shearing, possibly combined with uniaxial or
biaxial stretching. For a thin-walled circular section the deformations are nearly homogeneous
and correspond to combined simple shear and plane strain extension, provided that the
thickness of the tube remains constant. The kinematics of the torsion test and its relation to
simple shear are discussed by Shrivastava et al. (1982) for solid circular bars, and by
McMeeking (1982) for thin-walled tubes. Here, we confine attention to homogeneous
combined simple shear and plane strain extension deformations, which include simple shear as
a specific case. Although the main interest in these modes of deformation stems from their
relation to the deformation modes encountered in torsion tests, we note that finite simple shear
tests have been done by Williams (1962). Comparisons between our model results and
Williams’s measurements of shear textures are provided in §3.

The block shown in figure 1 is to be subjected to extension-shear deformations characterized
by the shear strain ¥ and the extensional stretch e. With allusion to a thin-walled torsion tube
in mind, the stretch ¢ may be construed to be the stretch in the specimen’s axial direction. In
our polycrystal model calculations, four different constraints are imposed on the sheared block,
one of which essentially fixes the deformation to be simple shear, and another of which allows
significant extensions to develop along with the shearing. In this section we consider only plane
deformations. Furthermore, to illustrate the sensitivity of the shear response to the constitutive
characterization of the material, we consider two classical rate-independent material models:
a hyperelastic solid and an isotropically hardening rigid-plastic solid. In each case we confine
attention to incompressible materials. Furthermore, the constitutive relations are specified so
that the uniaxial tension (and hence pure shear) response of these two material models is
identical. The deformation gradient F is given by F = 0x/0X, where x represents the current
position of a material point that is located in the reference state at X. Both x and X, and thus
the components of F, are referred to a fixed set of laboratory axis €,, e, and e;. For the block
subject to plane stretching and shear, as illustrated in figure 1, F can be written as

F=[lée ”], - | (1.1)

[4

where ¢ is the stretch normal to the shearing plane and y = etan ¢ is the shear. By using the
polar decomposition theorem, F can also be written as

F=V-R, (1.2)

where V is the left stretch tensor and R is the rotation tensor. We note that R is a pure rotation
and V is symmetric and represents a pure deformation. The two eigenvalues of V are related
by A;; = 1/A; because of the assumed incompressibility ; the principal directions are related for
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X2

[ 6

Figure 1. Schematic illustration of a block subjected to shear with shear strain ¥ and axial extension ¢; n; and
n,, are the orthonormal eigenvectors of the left stretch tensor, and e,, e, and e, form a fixed orthonormal
basis.

this plane situation as ny = dn;/dyy, where { is the angle n;, makes with the x,-axis.
Thus

n; = cos ye, +sin yre,, (1.3,)
ny,; = —sinye, + cos ye,, (1.3,)
and V=2Ann+Ann,. (1.3,)

With the definition # = 3(e+1/e), it may be shown by solving the eigenvalue ;;roblem for V

that
__.1 = 2 Zj A/ 2 ')_’_2__)
AI_AU—«/('M +4)+ /3 +4 1), (1.4)

and Y = arctan (2y/evy) (1.5)

with xs,ﬁ—’—e‘—lf; J[(ﬂ +X )(ﬂ +l;-— )] (1.6)

With these definitions, and for later reference, we note that

. —_ Xey
sin 2y = o+ Gey)® (1.7,)
: _ (2 Y)'=x
and cos2y = eyt (1.7,)

It is also of interest to note that if R is written as
coso sinoa
R= , (1.8)
—sina  cosa

then o = arctan [y/2u]. (1.9)
34 Vol. 328. A
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Note also that if e = 1, then g =1 and
tan2y = 2/y, (1.10)

which is a well-known result (Chadwick 1976).

Hyperelastic solid. For an incompressible isotropic elastic solid, the principal directions of the
true (or Cauchy) stress coincide with those of V. We assume that the deviatoric parts of stresses
are derived from an elastic potential that is further assumed to depend only on the principal
logarithmic strains

e=1InA;, e;=IhA;=—-InA, (1.11)

Furthermore, the potential function @ is taken to depend only on the ‘effective’ part of the
strain, €, = 1/[2(e} +€%)], such that §; = 0P /0¢; and S;; = 0P/0¢,;, where S is the deviatoric
(Cauchy) stress. Then if o, represents the mean normal (hydrostatic) stress, the above leads
to the following results for the components of Cauchy stress on the laboratory axes:

015 = 23 d®/de, sin 2¢, (1.12,)
0y, = 95dP/de cos 2y + oy, (1.12,)
and 0as = —J3dP/de, cos 2y + o, (1.12;)

Note that (0}, —0,,)/0y, = 2cot 2y and thus when ¢ = 1, (0, —0,,)/0,, = ¥ from equation
(1.10) independent of the particular potential function @. This result is also well known (see,
for example, Gurtin 1981).

To provide background for the various phenomena discussed above and later in §3, two sets
of boundary conditions are considered here. For one set of conditions, the height of the block
remains fixed throughout the deformation history so that ¢ = 1. In general, normal stresses are
required to maintain the fixed height. The other set of boundary conditions requires the normal
stresses to vanish so that in this case the block is free to extend.

When the extension is constrained so that ¢ = 1, equation (1.7), together with the definition
of effective strain and (1.12) yield

0y, = 73d®@/de,sech (Ee,), (1.13,))
0y, =o3dP/de tanh (Fe,) + o, (1.13,)
and 0y = —23d®P/de, tanh (Ee,) + 0, (1.13,)

When the block is free to expand and there are no normal stresses, o, = 0, and equations
(1.12) show that cos2yr = 0. From (1.7) this implies that

X—Gey): = 0. (1.14)
Factorization of this relation shows that ¢ depends on 7y according to
e=vV{@y)+VvIL+ &) (1.15)

With 0,, = 0,, = 0, equations (1.6) and (1.7,) also show that sin 2y = 1 so that according to
(1.12)) ‘ .
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Curves of shear stress against shear strain for these two sets of boundary conditions are shown
in figure 2 for a material with a power law strain energy function

Ble,) = o/ (N+1) " /] (1.17)

with N = 0.1 and ¢, = 0.002. For the case 0,, = 7, = 0, the development of normal (axial)
strain €,, = Ine is also shown in the figure. For the hyperelastic solid, the shear-stress—shear-
strain curve is quite sensitive to the imposed axial constraint. With ¢ = 1, the shear stress

FiGURE 2. Stress against shear strain for a hyperelastic solid and a material described by J;-flow theory (- - ) with
isotropic hardening. Two sets of constraints are used, ‘constrained’ for which €, =0 (-——-) and
‘unconstrained’ for which o, = oy, = 0 ( ). Also shown is the axial strain €,, = In (¢) for the unconstrained
hyperelastic solid (—— referred to the right ordinate).

reaches a maximum, then decreases asymptotically to zero whereas when the ends are free to
extend the shear stress monotonically increases. The rotation also depends on the boundary
conditions. With ¢ = 1, & in equation (1.9) approaches 3 at large y. On the other hand, with
0,1 = 0, = 0, it is easily shown that for large ¥ equation (1.15) implies ¢— 7y so that the angle
¢ in figure 1 approaches ir as does the angle of rotation a. For y € 1, ¢ & 1 +}y* and a near-
parabolic relation between the stretch ¢ and the shear strain is observed, in agreement with
earlier classical analyses by Poynting (19og9) and Van Arsdale et al. (1980).

1.2.1. Jp-flow theory with isotropic hardening

For an isotropically hardening rigid-plastic solid, the flow rule takes the form
D =3¢/20,5, o,=+/(3S:S), €=+ (ED:D), (1.18)

where S is again the deviator of Cauchy stress, o is the effective stress, € is the effective strain
rate, and D = sym (F- F') is the rate of deformation. Note that &, the effective strain obtained
by the integration of €, does not in general correspond to €,, i.e. the effective strain defined just
before relations (1.12). Only for proportional loading histories, i.e., those in which the principal

4-2
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axes of S do not rotate (e.g. uniaxial tension), do € and ¢, coincide. Here, the flow theory
material is taken as a pure power law hardening solid, i.e.

o, = 0,(E/e,) (1.19)

with N = 0.1 and ¢, = 0.002. With this hardening description, the response in uniaxial tension
is the same as that for the hyperelastic solid (1.17).

We now focus on the constrained boundary conditions ¢ = 1, where the only non-vanishing
components (on e,) of D are D,, = D,, = 1y. From the first relation of (1.18) we see that the
only non-vanishing components of § are §,, = §,, = 7,,, and under these conditions, the last
two relations of (1.18) give o, = v/3 0, avd y = 1/3€. Use of these in the power law (1.19)

yields 01 = 0/ V3(/e)", T=y/V3. (1.20)

Furthermore, because no normal stresses develop for this material, this is also the solution for
the condition ¢, = 0,, = 0 (where o, =0 has been chosen). The o,;,—y curve (1.20) is
depicted in figure 2. It is interesting to note that the solution obtained for the hyperelastic solid
(under oy, = g,, = 0) is recovered by replacing € with ¢, in the first of (1.20). As the figure
shows, the J,-flow theory curve of o, against y nearly coincides with that of the hyperelastic
material under no normal stresses, which shows that €,(y) & €(y) in this case (even though the
deformation modes are substantially different).

As also shown in figure 2 these two material models predict very different normal stress and
normal strain responses. The hyperelastic constitutive relation predicts a strong qualitative
dependence of the shear-stress—shear-strain response on the boundary conditions, whereas
isotropic hardening rigid-plastic J,-flow theory predicts a response independent of these
boundary conditions. What is also significant in the present context is the dependence of
material rotation on boundary conditions indicated by the hyperelastic constitutive relation.
Consider a scribe line initially parallel to the x,-axis. When ¢ = 1, the material points on this
scribe line become parallel to the x,-axis for large y. On the other hand, when the block is free
to extend, ¢ ~ 'y for large 7, and the scribe line approaches 45°. Hence, relative to the fixed
height case, the unconstrained boundary conditions induce a counterclockwise rotation.

These results provide useful background for the model simulations described next and for our
planned comparisons with the behaviour of the phenomenological theories presented in §4.

2. THE POLYCRYSTAL MODEL

Crystal plasticity models explicitly represent deformation by crystallographic slip. In single
crystal and polycrystalline metals with face-centered cubic (Fcc) or body-centered cubic (BCC)
structures, slip is the dominant mechanism of deformation over wide ranges of temperature and
strain rate. One of the first quantitative analyses of the behaviour of Fcc single crystals
was made by Taylor (19384, b). Taylor’s model assumed rigid-plastic rate-independent
deformation so that the choice of active slip systems was non-unique. Because at most five slip
systems need to be active to accommodate an arbitrarily prescribed increment of deviatoric
external strain, Taylor chose five (accommodating) increments of crystallographic slip such
that the sum of their absolute values was minimized. However, as noted by Taylor (19384),
in many instances more than one such set of five shears could be chosen. The minimum shear
principle of Bishop & Hill (19514, b) contains Taylor’s model as a specific case, and thus
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problems of non-uniqueness arise here also. A more general framework describing the
incremental rate independent elastic-plastic response of single crystals has been presented by
Hill (1966). In this work, the uniqueness of rate-independent slip systems was shown to be
inextricably linked to the crystal’s hardening behaviour: given either the value of the Jaumann
rate of Cauchy stress based on lattice spin or the value of the (external) rate of deformation,
the slip system shear rates are uniquely determined if the crystal’s hardening moduli are
positive definite. Hence, positive definiteness of the hardening moduli is sufficient for the
unique solution of mixed rate boundary value problems. Using a physically based kinematical
model for crystallographic slip, Asaro & Rice (1977) have cast the (rather sparse) incremental
framework of Hill in a more definite form. Although the main thrust of their paper is the
relation of non-Schmid hardening descriptions to bifurcation phenomena, they also examined
various measures of the resolved shear stress increment in some detail. Rice (1971) has shown
how crystallographic slip (or continuum slip) models fit into his theory of finite strain elastic-
plastic constitutive equations that use internal variables to characterize the current state of
‘microstructural rearrangement’. More importantly, at least for our purposes, Asaro & Rice
(1977) interpreted Lee’s (1969) deformation gradient decomposition in a physically more
meaningful way: the orientation of the intermediate configuration, i.e., that defined by F?
below in equation (2.1), was taken to be determined solely by the kinematics of slip. This
interpretation of the decomposition is pictured in figure 1 of Asaro & Rice (1977). Using this
interpretation and a convenient (and correct) measure of the resolved shear stress increment,
Asaro (1983 a) and Peirce et al. (1982) recast the incremental forms of Asaro & Rice (1977)
to give a rather general and computationally convenient rate-independent finite-strain elastic-
plastic continuum slip description that was used to solve rate boundary value problems for the
two-dimensional crystal model of Asaro (1979). Also, one should mention that a very general
rate-independent finite-strain elastic-plastic crystallographic slip framework has been provided
by Hill & Rice (1972), which was later elucidated by Hill & Havner (1982). As mentioned
above, the solution of rate boundary value problems requires that the rate constitutive
equation be invertible, i.e. that the choice of slip system shear increments be unique under both
prescribed increments of stress and prescribed increments of strain. Peirce et al. (1982) found
that for most (experimentally motivated) hardening descriptions, the rate constitutive equation
became singular. This problem of non-uniqueness was later resolved by Peirce et al. (1983),
where rate-dependent slip relations that guarantee invertibility were used. Additional
discussion on this point has been given by Asaro (19834, b).

An early extension of the theory of single crystal behaviour to that of polycrystalline response
was made by Taylor (19384, ). Using the slip minimization procedure described above, he
calculated the response of a polycrystal under uniaxial extension with the assumption that
each grain of the aggregate is subject to the same external or global increment of strain. He took
his measure of macroscopic stress to be (most simply) the average of the stresses developed
within each grain. The formulation of a polycrystal model should contain clear concepts of
macroscopic stress and deformation measures: Hill (1972) has given a general treatment
concerning the construction of these macrovariables for heterogeneous materials composed of
homogeneous microconstituents under the conditions of finite strain. The use of Taylor-like
assumptions in polycrystal models can be defended to some extent with Hill’s constructions.
The polycrystal model used for the finite shear simulations of §3 is the rate-dependent model
of Asaro & Needleman (1985), which extends the single crystal framework used by Peirce
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et al. (1983) via such Taylor-like assumptions. The rate-dependent formulation gives a unique
specification of slip system shear rates, which gives unique predictions of lattice reorientations,
and hence unique predictions of texture development.

2.1. Constitutive behaviour of crystallites

The mechanics of crystal deformation by slip is represented in two parts. The first part is a
set of plastic simple shears from the reference configuration on the slip systems of the crystallite.
Here, the material is envisioned to flow through the lattice via dislocation glide. Next, the
lattice with its embedded material elastically deforms and rigidly rotates from this plastically
sheared state to reach the current configuration. Hence, following Rice (1971) and Asaro &
Rice (1977) (see their figure 1), the deformation gradient F, introduced in the previous section,

is decomposed as F=F* Fv, (2.1)

In this decomposition, F? is the description of the material shear flow along the various slip
systems of the crystallite, and F* is the description of the elastic distortion of the lattice along
with the rigid rotation of the crystallite. From (2.1) the spatial gradients of velocity are

L=FF'=F* F*'{F* Fo-Frl. ¢, (2.2)
The plastic shear flow from the reference configuration is written as

Fr.Fr-1 = 2.}-,<a>s(a)m(a), (2.3)

a
where @ is the shear rate on slip system a. The slip system « is defined by the unit
crystallographic vectors s and m®, where s is along the slip direction in the reference
configuration, and m® is normal to the slip plane in the reference configuration. Hence, s
and m® are orthogonal. Here, the shear rate on each slip system is allowed to be positive or
negative. With this convention, a ranges from 1 to 12 in equation (2.3) for an rcc crystallite.

Hence, .
F*-Fr-Fr-l.F¥-1 — Dp 4 WP = 27(4)5-*(&)"1*(«), (2.4)

where s*® = F*-5 convects with the lattice and m*® = m® - F*~! remains orthogonal to
s*@_ Define the tensors

P(a) = sym {s*(a)m*(a)}’ W(a) —_ skew {s*(a)m*(a)}, (2.5)

so that DP =S y9OP@, WP =Yy W, (2.6)

Now, break F*-F*! into its symmetric part D* and its skew-symmetric part W* so that
D=D*+D°, W=W*+Wr, (2.7)

where D and W are the symmetric and skew-symmetric parts of L. Relations (2.7) give the
natural additive decompositions afforded by (2.1). Note that D* is the rate of deformation
associated with lattice elasticity and W* is the spin associated with lattice elasticity and rigid
rotation of the crystallite, whereas D® and WP arise solely from the plastic slip. Note that this
physically motivated model gives an explicit formula for the plastic spin WP®, which in most
phenomenological models is assumed to vanish.

The plastic response of a crystallite is cast in terms of the resolved shear stress on each slip


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LARGE-STRAIN SHEAR OF FCC POLYCRYSTALS 457

system and the shear rate on each system. This is a simple extension of the well-known Schmid
rule (for a critical resolved shear stress for yield) to the case of ongoing plastic flow. The rate
of work per unit of volume in the reference configuration is

1:D =1:D*+1:D° = 1: D¥4+ T 799, 4 (2.8)

where 7@ = 17: P® = m*@-¢-5*@ js the resolved shear stress acting on the slip system a, and
7 is the Kirchhoff stress. Note that 7' is the proper work conjugate to the slip rate 7. The
relation between the resolved shear stress and the slip rate is given by

7 = dsgn{r@HIr /g@pm, (2.9)

where d is a reference shear rate (which is the same for all slip systems), g is the slip system
hardness, m is the material rate sensitivity (which is also the same for all slip systems), and
sgn () means ‘the sign of”. This viscoplastic power law has been used previously by Asaro &
Needleman (1985). As m— 0, rate-independent response is achieved. Note that each of the slip
systems is active as long as the resolved shear stress on that system does not vanish. Hence, the
constitutive description is free from various loading or unloading criteria. The hardness
function g for multiple slip is constructed from the assumed single slip law

£(y) = 7o+ iy + (,—7,) tanh {(”f f) y}, (2.10)

TS o

where g(7) is the resolved shear stress on the slip system (when the shear rate is at its reference
value d), v is the amount of shear (absolute value) on the system, 7, is the initial (or critical)
shear stress of the system, and %, and £ are the system’s initial and asymptotic hardening rates.
If h, = 0, then 7, represents the asymptotic (or saturation) value of the shear stress. From
(2.10), the single slip hardening rate is ‘

h(y) = hy+ (h,—h) sech? {(”°""S) y}. C(2.11)

Ts— 7o

These single slip laws are generalizations of those used previously by Peirce et al. (1983) and
Asaro & Needleman (1985) based on measurements of strain hardening of single crystals of
aluminium alloys by Chang & Asaro (1981). For the present purposes, (2.11) provides a
convenient relation for exploring the interaction between material strain hardening and
texture development.

The generalization of these single slip equations to multiple slip is achieved by taking
&9 = g (y,), where v, is the accumulated sum of slips, i.e.

Y. = | Zly®lde. (2.12)
0a
For multiple slip, the evolution of the hardness is governed by
£9 = T h,lyPl, (2.13)
s

where g®(0) = 7,, and where £, are the hardening moduli. The form of the moduli is

hap = h(Ya) Gaps (2.14)
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where k(y,) is the single-slip relation (2.11), and g,, is the matrix describing the latent
hardening behaviour of the crystallite. The form of ¢,,is motivated by the body of experimental
studies reported in the literature (see Kocks (1970) for a discussion), and by the overshoot
calculations by Asaro (19834) and Peirce et al. (1982). For Fcc crystallites possessing 12 slip
systems of the type {111}{110), we have taken the simple form

4 gA g4 g4

A4 ¢4 ¢4 015
qaﬂ = A l]A ’ ( . )
sym 4

where g is the ratio of the latent hardening rate to the self hardening rate, and 4 is a 3x 3
matrix fully populated by ones. In (2.15), the numbering of the slip systems is such that systems
1, 2 and 3 are co-planar; as are 4, 5 and 6; 7, 8 and 9; and 10, 11 and 12. Hence, the ratio
of the latent hardening rate to the self hardening rate for coplanar systems is taken as unity,
in reasonable accordance with experiment. The form of the hardening description as given by
equations (2.13), (2.14), and (2.15) has been used previously by Asaro & Needleman

(1985).
The elastic response of the crystallite is governed by the form

T* = L:D*, (2.16)

where 7* is the Jaumann rate of Kirchhoff stress based on the lattice spin W*, i.e.
T =i— Wor—1- W*T. (2.17)

To define L, let a; be the (orthonormal cartesian) base vectors of the reference crystal

configuration and let af be the covariant (or convected) base vectors associated with lattice
motion, i.e.

af = F*-q, (2.18)

The vectors a, are taken to be aligned with the axes of the undeformed cubic crystal. the elastic
moduli L are then given by

L = L""a} a} a} af, (2.19)

where the elastic stiffnesses L*' are consistent with linear elasticity. As discussed by Asaro &
Needleman (1985), the relation (2.16) may be viewed as an approximation to hyperelastic
response if the magnitude of the elastic stiffnesses is large compared to that of the stress

. v .
components. The relation between the Jaumann rate 7* based on W* and the conventional

v . .
Jaumann rate 7 based on the total spin W is

T =T+ 3 y9pe, (2.20)

where fP=Wor—1- W, (2.21)
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Combine (2.6), (2.7), (2.16), and (2.20) to find the governing rate form

1=L:D-3y“R®, (2.22)

where R® = L:P®+ =, ' (2.23)
Looking ahead, it is most convenient to write (2.22) in the form
n=K:F—B, (2.24)

where 7 is the rate of nominal stress, n = F'-1. As described in Asaro & Needleman (1985),
the rate tangent modulus method of Peirce et al. (1983) is used for the numerical
implementation of (2.24).

2.2. Homogeneous deformation of aggregates under shear loading

Given the constitutive behaviour of single crystallites, the constitutive response of a
polycrystalline aggregate is sought. Here, each grain of the aggregate is assumed to be identical
in terms of constitutive response. In the spirit of Taylor’s model (19384, 4), the aggregate is
subject to a uniform deformation and continuity among the various crystallites (or grains) is
enforced by requiring that each is subject to the same (global) homogeneous deformation.
Contrary to Taylor’s model (where each component of the deformation gradient is prescribed),
the present model incorporates the homogeneous (shearing) deformations into rate boundary
value problems involving the average nominal stress rate /# and the global deformation
gradient rate F. Superposed bars are used to indicate average quantities, while quantities
dealing with the £th crystallite are indicated by a superscripted k. The average nominal stress
is given by '

_ 13 ® qy o
A=y | nway (2.25)
. . 1 N '
whose rate is n==> f n®dy®, v (2.26)
Visilvw '

N
where V=X V®, (2.27)

k=1

Here, V™® is the reference volume of the kth crystallite, 2 (7®?) is the nominal stress (rate) in
that crystallite, and N is the number of grains that make up the polycrystal. In terms of the
model, (2.26) is written more simply as

A% B (2.28)

M=

fi=

1
Nk 1
because the stress state in each grain is homogeneous and each grain is taken to have the same
(arbitrary) volume. Note that the average Kirchhoff stress is .

t=Fn - (2.29)
because 1® = F®-p® = F-n®, In the same manner, the average of (2.24) is

fi=K:F-B, (2.30)

35 Vol. 328. A
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' e 1 X
where K== K%» B=L3% B®, (2.31)
k=1 Nk‘l

For an aggregate that is subject to velocity boundary conditions that correspond to the
deformation gradient rate F, Hill (1972) has shown that 7 as given by (2.25) is indeed the
proper work conjugate to F (as long as continuity and equilibrium are satisfied throughout the
aggregate), and hence 7 is a proper measure of global stress. Within the context of the model,
each grain is homogeneously stressed so that equilibrium is not satisfied at the grain-
boundaries, but nevertheless, 7 is taken as the measure of global stress. This assumption is the
basis of the averaging procedure, and it is inherent in any type of Taylor model. A more
thorough discussion of the averaging is given in Asaro & Needleman (1985).

We consider an aggregate of grains subject to boundary constraints consistent with uniform
deformations of a homogeneous medium. The boundary conditions are expressed in terms of
the deformation gradient, F and the unsymmetric nominal stress, n. The deformation gradient
is defined as F = 0X/0x, where X denotes the current position, relative to a fixed cartesian frame
of a material particle initially at x. The unsymmetric nominal stress, n, is related to the force
transmitted across a material element by dP = v-n-dS, where v and dS are the orientation and
area of the material element in the reference configuration, respectively, and T = v n is termed
the traction vector. An overall homogeneous simple shearing deformation is specified in terms
of various combinations of prescribed average nominal stress rate and aggregate deformation
gradient rate. In each case the plane of shearing is the x,—x, plane and, to examine the
importance of boundary constraints, four rate boundary value problems are examined. Each
is cast so as to constrain any rigid-body rotation. Common to all are the conditions

=it =i =0, By=E =0, Fy=0, F,=7, (2.32)
where ¥ is the prescribed shear rate.

The first relation in (2.32) expresses the requirement that the out-of-plane traction vector
vanishes. The second relation in (2.32) requires a line of material particles along the shearing
direction (the x, axis) to remain along that axis, whereas the third relation in (2.32) constrains
the rotation of material points initially along the x, axis. Alternatives to (2.32) could have been’
employed; for example, the rotation of planes parallel to the plane of shearing (the x,—x, plane)
could be constrained, with B, = f; = 0 prescribed rather than #*' = #%2 = 0. For classical
isotropic (or orthotropic) phenomenological constitutive relations, such as considered in §1
here, these various out-of-plane boundary conditions are equivalent. Nevertheless, because the
polycrystalline aggregate is not exactly orthotropic, the constraint combinations must be
chosen with some care to avoid overconstraining the aggregate; for example, if the kinematic
constraints preclude any volume change, the elastic compressibility induces a large hydrostatic
stress. With (2.32), the numerical results show that the quantity work conjugate to the one
constrained remains small; for example, |F,|/A and |F,|/A, where A is the maximum principal
stretch, are of the order of 1072 or smaller. This indicates that prescribing the work conjugate
quantities would not significantly affect the results. By way of contrast, the various in-plane
constraints considered here do affect the overall response.

For the first problem, the boundary conditions supplementing (2.32) are

2

B, =F,=0; (2.33)
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for the second problem, the remaining conditions are

f =0, E, =0; (2.34)

for the third problem, they are

T = (Fufy+Fany) =0, ﬁ;z =0; (2.35)
and finally for the fourth problem, they are

flpy =0, 71y = (R + B, )" = 0. (2.36)

The initial conditions for each of these rate problems correspond to zero stress and
deformation.

Although each of the above sets of boundary conditions refers to a state of homogeneous
deformation, each is meant to model various aspects of finite-strain torsion experiments. A
torsion specimen (rod or tube) is usually described in terms of circular polar coordinates 7, 6,
and z. In the above boundary condition sets, the e,-direction may be construed to be the
circumferential (or ) direction; the e,-direction, the axial (or z) direction; and the
e,-direction, the radial (or r) direction. In each of the sets, any face with normal + e, is traction
free, which would correspond to a traction-free lateral surface on a torsion specimen. With
these allusions to torsion in mind, the first rate boundary value problem will subsequently be
referred to as ‘fully constrained torsion’, because here the hoop and axial components of
normal strain are prescribed zero while the hoop and axial components of normal (Kirchhoff)
stress are allowed to develop. This is analogous to torsion of a solid rod with fixed ends, or more
precisely, torsion of a thin-walled tube with a rigid internal mandrel and fixed ends. The
second problem will be referred to as ‘ torsion with mandrel’, because the hoop component of
normal strain is prescribed zero while the hoop component of normal stress is allowed to
develop. Also, axial strains are allowed to develop. The third problem will be referred to as
‘torsion with end constraint’, because the axial normal strain is set to zero while the axial
normal stress is allowed to vary. Also, hoop strains are allowed to develop as they would in a
thin-walled tube without a mandrel. Finally, the fourth rate boundary value problem will be
referred to as ‘unconstrained torsion’, because all three normal stress components are made to
be zero while all three normal strains may develop. It is worth reiterating that, in all four of
the above boundary condition sets, the shear strain components Fj, and F,, are allowed to
accumulate. If these two shear strains become too large in magnitude, then a reasonable
description of torsion will no longer be had, but for aggregates that remain nearly orthotropic,
these two (undesirable) shear components will be small. As noted above, our numerical results
show this to be true.

The rate boundary value problems (2.32)-(2.36) are designed to model the rcsponsé of
polycrystals that are initially free from any kind of stress or deformation, i.e. the aggregates are
thought of as being in the fully annealed condition at the start of the torsion test. In the
experiments done by Montheillet et al. (1984) this is indeed the case, but Williams (1962),
on the other hand, performed his finite shear experiments on as-received rolled plate stock.
Even though the as-received stock is globally free from stress (7 = 0), it has residual stresses
(n® # 0) present from previous working. In fact, Williams presents pole figures that show
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the initial rolling texture of his stock. To quantify this situation, the deformation gradient will
be written as F=E-F, (2.37)

where F, is the (global) deformation gradient that measures the residual deformation of the
as-received state with respect to the virgin (or fully annealed) state, and where E, is the (global)
deformation gradient that measures the deformation of the current (sheared) state with respect
to the as-received state. The stress measure #, that is conjugate to F; is found by looking at the
total work rate, i.e.

f ﬁ:F’dV=J A Edv, (2.38)

v Va

where dV is an element of material volume in the virgin state and dV, is that element of
material volume in the as-received state. Hence,

e

n, = ‘m, (2.39)

o~ =

. where J, = det E,. The rate boundary vaiue problems that model finite torsion of as-received
material are then obtained from (2.32)~(2.36) by replacing # with #, and F with E. The initial
conditions are then =0 and F = E, '

2.3. Initial grain distributions and model parameters

To solve the above rate boundary value problems for a polycrystalline material, the virgin
aggregate itself must first be defined. This is done by specifying a group of orthogonal
transformations that give the orientations of the crystallites’ reference axes with respect to the
laboratory axes, i.e. a® = rﬁé}" e, (2.40)
where £ ranges from 1 to the number of crystallites in the aggregate. Two different initial grain
distributions have been used for the calculations presented here: one contains 489 grains; the
other, 300 grains. Both are meant to be approximations of an initially isotropic aggregate.

Orientations of crystallites that make up an aggregate are measured via X-ray diffraction,
and traditionally the data generated are presented in terms of pole figures and inverse pole
figures. In accordance with most of the literature dealing with Fcc polycrystalline shear, the
pole figures presented in this paper are exclusively e, stereographic projections of {111)
crystallographic directions. In these figures, the laboratory shear direction e, is labelled as Xy,
and the shear plane normal e, is labelled as x,. The direction e, will also be referred to as
x3. The inverse pole figures presented in this paper are [100] stereographic projections of either
the x,-direction or the x,-direction. The direction indices of the resulting inverse pole points are
~ arranged so that they fall within the [100], [110], [111] standard triangle.

The distribution with 489 grains is generated in a manner similar to that used by Asaro &
Needleman (1985). First, a regular array of 55 points is plotted on the standard triangle so that
it is uniformly covered. Each of these points is taken as an inverse pole point of the x,-axis. The
grain corresponding to the first of these points is chosen so that the x,-axis corresponds to the
[100] crystal direction; the x,-axis, the [001] direction. Each of the remaining 54 points
correspond to three grains. For the first of the three grains, the x,-axis is given a random
orientation in the plane normal to the x,-axis. The next two grains are obtained by + 120° and
— 120° rotations about the x,-axis from the first. In this manner 163 grains are generated. Now,
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the inverse pole figures of the x,, x, and x3-axes of this distribution of 163 grains are all different,
but for isotropic material, all three of these should be the same. Persuant, two more grains are
generated from each of the first 163 grains in such a way so as to yield three identical inverse
pole figures. Hence, this distribution consists of 489 grains.

The distribution with 300 grains is generated in somewhat of a simpler manner. As above,
this set actually consists of 100 grains, from each of which is derived two more grains so that
the three inverse pole figures are identical. Each of the original 100 grains is generated by
choosing a random x,-direction that lies within the standard triangle, and then by choosing the
x,-axis to have a random orientation in the plane normal to the x;-axis. A fairly uniform
coverage of orientations is obtained for both initial grain distributions as shown in the resulting
pole figures in figure 3.
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Ficure 3. Initial grain orientation distributions for (a) 300 grains and (4) 489 grains represented by {111}
stereographic pole figures. The axes x, and x, correspond to those shown in figure 1.

’_] .

< — In the virgin state, K in (2.30) has the needed information to form the initial elasticity tensor
S ~ L° for an aggregate. The L° provides a measure of an aggregate’s degree of isotropy. On the
2 laboratory axes, L° in matrix form is

= O jo jo jo jo jo jo

I O ( Lllll L1122 L1183 1112 1113 11231

= g

jo I° o jo jo
2222 2233 2212 2213 2223

. (2.41)

jo 7o [} Jo
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For an isotropic polycrystal one would have

Lo = L3ge, = Zgaaa =A+2pu, L3 = El)_laa = L3y = A,

_ _ _ ' (2.42)
Lise = Ligi3 = Loges = 1,

with the other components being zero, and where A and g are the usual elastic constants. The

crystal elasticity is governed by

C,, = 8427, C,,=607r, C, =377, (2.43)

where 7, is as in §2.1, and where C,,, C,, and C,, are the usual cubic elasticities. These constants
represent the anisotropy of copper crystals. In table 1, the initial elasticity tensors L° + 7, are
presented in matrix form for three different grain distributions. The distribution with 196
grains was used previously by Asaro & Needleman (1985) for uniaxial and plane-strain
deformations, with the x,-axis being the loading axis. As evidenced by the values of L3,,,, L3,,,
and LY,,,, this distribution behaves exceptionally well for uniaxial histories. But, when the
torsion simulations were first tried by using this aggregate, the non-orthotropic behaviour, e.g.
that induced by L3,,, = 0.10L3,,,, was deemed inadequate. The other two distributions are
designed to give a more nearly isotropic aggregate. As seen in table 1, the distribution with
489 grains satisfies the relations (2.42), but there is still some non-orthotropic response, e.g.
L9112 = 0.033L%,,,. The distribution with 300 grains provides a more nearly orthotropic
material, e.g. L3,,, = —0.0014 L3, ,, but this is at the expense of relations (2.42). Other grain
distributions with more than 1000 grains were looked at, but the improvement obtained was
not substantial enough to justify the increase in computational time that one would be
required.

TaBLE 1

196 grains
1043.8 510.06 502.15 28.26 0.00 8.83
510.06 = 1035.9 510.06 0.00 0.00 0.00
502.15 510.06 1043.8 —28.26 0.00 —8.83
28.26 000 —28.26 280.06 883 - 0.00
0.00 0.00 0.00 8.83 272.15  —28.26
8.83 0.00 —8.83 0.00 —28.26 280.06

489 grains
1049.6 503.20 503.20 9.04 —3.64 —-5.40
503.20 1049.6 503.20 —-3.64 —-5.40 9.04
503.20 503.20 1049.6 —5.40 9.04 —3.64
9.04 -3.64 —-5.40 273.20 —5.40 —5.40
—3.64 —5.40 9.04 —5.40 273.20 —-5.40
-5.40 9.04 —3.64 —-5.40 ~5.40 273.20

300 grains
1076.7 489.66 489.66 0.25 —-0.37 0.12
489.66  1076.7 489.66 -0.37 0.12 0.25
489.66 489.66  1076.7 0.12 0.25 —-0.37
0.25 —0.37 0.12 259.66 0.12 0.12
—0.37 0.12 0.25 0.12 259.66 0.12

0.12 0.25 —-0.37 0.12 0.12 259.66

In addition to two grain distributions, various hardening and strain-rate sensitivity
properties have been used in the calculations. Two different single-slip hardening descriptions
have been employed; cf. (2.10). The first, designated by 4, = 0.0, corresponds to the constants
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7, = 1.87,, k, = 8.97,and &, = 0; the second, designated by A, = 0.1, corresponds to 7, = 1.897,,
h, = 8.97, and A, = 0.17,. Note that when 4, = 0, hardening quickly saturates so that slip
system hardening-essentially vanishes when 7y (in single slip) is larger than ca. 0.1. Thus, the
influences of texture on polycrystal strain hardening are more readily apparent in this case than
for h, = 0.17,. Two values of the ratio of latent-hardening rate to self-hardening rate, cf. (2.15),
have been used: these are ¢ = 1.0 and ¢ = 1.4. The value ¢ = 1.0 corresponds to Taylor’s
isotropic hardening whereas ¢ = 1.4 is taken to be an upper limit, at larger strains, of the strong
latent hardening observed in lower stacking fault energy materials (see, for example, Asaro
19834 and Kocks 1970). We have observed that the effects of latent hardening are continuous
in the range ¢ = 1.0-1.4 and so these two values provide a relatively complete description of
the influence of latent hardening specialized, of course, to the present simplification of constant
¢ and the matrix form of equation (2.15). The reference shear rate d of (2.9) is given by the
material time constant 7, + (C,, d) = 1.19, and the global shear rate y of (2.32) has been set
to y = d. Finally, various values of the material rate sensitivity m, cf. (2.9), have been
employed: m = 0.005, m = 0.02, m = 0.05, m = 0.2 and m = 0.5. The latter two values are
used to explore some rather interesting effects of viscous behaviour in the power law region of
01<m<1.
2.4. Ideal shearing textures

Before examining the numerical calculations of §3, it is helpful to look at some simple results
that pertain to pole figure geometry and ideal textures of Fcc polycrystal subject to shear. For
convenience, attention is confined to rigid-plastic behaviour so that the covariant lattice base
vectors aff, cf. (2.18), form an orthonormal triad.

The first of these results follows from the ideas of van Houtte & Aernoudt (1976), and deals
with equivalent orientations of crystallites with respect to the applied mode of deformation. For
the shear problems at hand, it is sufficient to consider spatial velocity gradients of the form

L=1L,ee+Le,e,+L;e;e;+Lye e, (2.44)

It is a simple matter to see that ;
Ly =L (246)

if the orientation of the second grain is obtained by rotating that of the first 180° about the
x4-axis. Next, consider an arbitrary crystallographic direction [£/] through two grains oriented
in this manner: it is easily shown that the [001] stereographically projected pole point of the
first grain’s [k£[] direction is centrosymmetric to that of the second grain’s [k/] direction. In
view of equation (2.46), both grains feel the same spatial gradients of velocity with respect to
their crystal axes, and thus, both will continue to be related by equation (2.46) as the indicated
deformation mode proceeds. Hence, the pole points of these two grains will remain
centrosymmetric. The above results are true regardless of the crystal class involved. Obviously,
an initial grain distribution does not consist of pairs of grains oriented in this manner, but these
results do suggest that any texturing that occurs will be characterized by pole figures that
exhibit global (as opposed to point by point) centrosymmetry.

Various workers (Montheillet e al. 1984, 1985; Canova et al. 1984) have classified the
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texture components that form when Fcc polycrystals are subject to shear. Both Canova et al.
(1984) and Montheillet et al. (1984) use the notation {kkl} {uvw) to describe ideal texture
components, i.e. crystallite orientations that may undergo shear without lattice rotation. Here,
the crystallographic planes {f£l} correspond to the shear plane, i.e. to the x,—x, plane, and the
{uvw) directions correspond to the direction of shear, i.e. to the x,-direction. Whereas Canova
et al. (1984) describe these textures in terms of ranges of orientations (fibres), Montheillet ¢t al.
(1984) use specific, discrete orientations.

As introduced earlier, past experimental works, as well as past and present computational
works, suggest that two basic fibre textures form. The first, the A-fibre, consists of orientations
whereby the {111} crystal directions align with the global shear plane normal x,. This fibre
is represented by the orthogonal transformation

a} = A,e, (2.47)
1 \
where Au=—2b An::/—g A13=—2d
Ay = —a+b A22=-\—}?—’ Ay = c+d (2.48)
Ay =at+b  Ay=-t A = —ct+d
31— 32—\/3 33 — ’J
and where
a—-—l——cosa b——l—sinoc c—isina d—-—l——cosa (2.49)
R V] SRV V6 :

The axis of this transformation is the e,-axis, and a measures the angular position of the A-fibre
crystallites about this axis. The symmetry operation for this fibre is a 120° rotation about the
e,-axis. For convenience, label the {111} crystal directions as follows: [111],1; [111],2;
[111],3; and [111],4. Also, introduce the notation I(X), where I is one of these four directions,
and where X is the value of a in degrees. With these conventions, the upper-left figure of figure 4
shows the pole figure generated by transformation (2.47) for —60° < a < 60°, where the
plane of the pole figure is described by the cartesian coordinate system (y,,,). If the bounding
circle is taken as y} + y; = 4, then the two net lines shown in the figure are circular arcs of radius
44/2 centred at (y,,y,) = (0, 6). The top (bottom) net line corresponds to the locus of pole
points 70.529° from the e,(—e,)-axis. On most of the pole figures that present the calculations
of §3, bands are drawn whose centres correspond to the above net lines. The partial A,-fibre
of Canova ef al. (1984) is denoted by {111} (uvw) and corresponds to —60° < o < 0°. The
A-type orientations of Montheillet ¢ al. (1984) are given by a = 460° for {111} {110); a = 0°
for {111} 110> ; a = 30° for {T11} (112); and & = —30° for {111} {112). Note that the texture
designation {hkl} Cuvw) of Montheillet et al. (1984) has been taken to mean the single
component (kkl) [uvw], and under this interpretation, the upper left-hand pole figure in figure 8
of Montheillet et al. (1984) has been incorrectly plotted: if one exchanges the upward-
pointing triangle symbol for the downward-pointing triangle symbol and vice versa, then the
figure is correct. The texture components given by a = +60° and a = 0° are single-slip
configurations and symmetric double-slip configurations are given by a = +30°. As will be
shown in §3, the behaviour of the components —60° < o < 0° differs from that of the
components 0° < a < 60°, and for this reason, the A-fibre classification is split into two partial
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Ficure 4. The {111} stereographic projections depict the ideal fibre textures (a) A and () B, as explained in 'th.e
text. The A, (A-fibre) and A, (A-fibre) orientation ranges are indicated in (c) with respect to the deformed
crystal lattice base vectors af, af, and aj. o : o '

fibres: A, given by —60° <« <0° and A, given by 0° < a < 60°. The lower figure of
figure 4 depicts the range of slip directions e, that make up these two fibres. The B-fibre
of orientations is the second class of textures that develop under shear, and it is represented
by the orthogonal transformation: ‘ o

| at=Bye, - (2.50)
where B, =0 By=cosf  By=—sinf
ot 1 .B_1-'
Bu=-73 By, —-ﬁsmﬂ Ba —'\72‘008,3 } (2.51)
Bymmt By Ling Bu=tcop
31— \/2  32_‘\/2 33—\/2 ‘}

36 Vol. 328. A
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This class consists of ideal components whose {110) crystal directions align with the global
direction of shear x,. The axis of this transformation is the e,-axis, and f measures the angular
position of the B-fibre crystallites about this axis. The symmetry operation for this fibre is a 180°
rotation about the e,-axis. By using the same conventions as above, the upper-right figure of
figure 4 shows the pole figure generated by —90° < £ < 90°, where the line y, = 0 is split for
the sake of clarity. The circular arcs shown in the figure are of radius 4/2 with centres
(#1,45) = (£4/6,0). These arcs correspond to the locus of pole points 35.264° from the
+e,-axes. Again, most of the ensuing pole figures have bands that demarcate these arcs (as
well as the line y, = 0). The partial B,-fibre of Canova et al. (1984), denoted by {Akl} {110),
corresponds to —54.736° < f < 54.736°. The B-texture orientations of Montheillet et al. (1984)
are given by # = —35.264° for {112} (110) and by # = 35.264° for {112} T10). As will be shown
in §3, the B-fibre orientations 54.736° < |8l < 90° have no tendency to form. For this reason,
following Canova ef al. (1984), we denote only the angular range —54.736° < f < 54.736° as
B,. Both Canova et al. (1984) and Montheillet e al. (1984) define a third texture type, i.e.
{001} (110, which is referred to as the C-component. This orientation is defined by g = 0°.
The positions defined by # = +54.736° are single-slip orientations. The position #=0°is a
symmetrically slipping two-plane configuration, i.e. one in which two slip systems (each of
different slip plane but of the same direction) slip at the same rate. As suggested by the
calculations of §3, the ideal pole figure for positive torsion, i.e. for ¥ > 0, consists of A; and B,
whereas that for negative torsion, i.e. for ¥ < 0, consists of the A, and B,.

3. NUMERICAL RESULTS

In this section we will first examine deformation textures to explore the effects of boundary
constraint, strain hardening, latent hardcnmg, strain-state sensitivity, and initial grain
orientation distribution. In addition, simulations of the experiments of Williams (1962) will be
compared directly with his measured textures. Textures produced by reverse straining (as in
the experiments of Swift (1947)) will also be presented. Next we will examine polycrystal
stress—strain behaviour, again examining the effects of boundary constraint, slip-system
hardening laws, strain-rate sensitivity, and grain orientation distribution. A third section will
focus on the Swift effect. Note that superposed bars over the various quantities that were
previously used to indicate average values over the aggregate are subsequently dropped, i.e. T
will be denoted by t and F will be denoted by F, etc.

3.1. Shear textures

) Expcrirﬁe'r'ltal measurcmcnts of shear textures have been briefly reviewed in §1.1. As already
noted, our primary rcpresentatlons of texture are stereographic {111} pole figures although
some examples of inverse pole figures are also given. The two mmal grain distributions were
shown earlier in figure 3.

The qualitative features of texture evolution can be seen in figure 5a—d. This calculation for
‘fully constrained’ shear of the ‘489’ grain aggregate shows the rotation of individual grains
into nearly ideal texture orientations. Movement of poles into ideal textures is evident in
figure 5a even at a (global) shear of y = 0.562. Sharp A, and B, textures form within a shear
strain of 3. We note here, and discuss later, that the predicted textures are more intense than
are observed in X-ray diffraction measurements of pole figures. Also note in figure 55 that the
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poles moving into ideal orientations appear to be rotated slightly, as an aggregate, in the
direction opposite to the shear direction (counterclockwise about the xg-direction) before they
sharpen into the ideal fibre textures. As this occurs the apparent global rotation of the pole
figure disappears. These qualitative features of rapid formation of texture and slight ‘ideal
texture rotations’ are characteristic of all of the calculations except those for high strain rate

sensitivities.
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E 8 of ‘fully constrained’ shear with material parameters 4, = 0.0, ¢ = 1.0 and m = 0.005. The ‘489’ grain

distribution was used. Note the ‘bands’ whose centres correspond to the ideal textures plotted in figure 4. These
bands also appear in subsequent pole figures. . - :

The effects of boundary constraint upon the ‘shear” texture are nominal, except for the
‘unconstrained’ case. Textures calculated for the ‘300’ grain orientation distribution after a
shear of 8.60 are shown for each of the four sets of boundary conditions in figure 6a—d. The
‘fully constrained,’ ‘torsion’ with mandrel,’ and ‘torsion with end constraint’ textures
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’_i ) Ficure 6. Pole ﬁguf‘es at a shear strain of v = 3.60 for the four sets of constraints: (d) fully constrained torsion,
< (b) torsion with mandrel, (¢) torsion with end constraint, and () unconstrained torsion. Material parameters
~ > for all four cases are 4, = 0.0, ¢ = 1.0 and'm = 0.005. The use of the label ‘torsion’ is meant to be suggestive.
O = The “300° grain distribution was used. : " '

3=

= O (figure 6a—) are nominally identical and are similar to the ‘489’ grain texture shown in
E 8 figure 5d. Thus for these large shear strains, the textures are similar so long as there is either

axial or hoop constraint. In addition, the slight differences between the ‘300’ and ‘489’ initial
grain orientation distributions do not appear to affect the predicted textures. However, we will
see later that the differences between the two distributions noticeably affect the constitutive
response. The ‘unconstrained’ case differs from the others in that the entire pole figure is
rotated ca. 7° counterclockwise (opposite to the direction of shear) about the x-axis. This
rotation can also be viewed by comparing inverse pole figures computed along the shearing
direction and the shear plane normal for the ‘fully constrained’ ‘case (figure 7a) and
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110 100

X,-ax1s
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Ficurke 7. Stereographic inverse pole figures corresponding to the cases represented by (2) fully
constrained torsion as in figure 64 and () unconstrained torsion as in figure 65.

‘unconstrained case’ (figure 75). The rotation of the A-fibre is evident as the motion of x,-axis
(z-axis) poles away from the {111} crystallographic plane normal. Similarly the rotation of the
B-fibre is evident in the x, inverse pole figure as the motion of x, poles away from the {110)
direction. The sense of this rotation is known to depend on the direction of shear, i.e. shearing
in the negative x,-direction would induce an opposite rotation. As will be explained in §4, the
kinematics of deformation are also quite different for the ‘unconstrained’ specimen and this,
along with the difference in stress state, accounts for the difference in texture.

The effects of strain hardening and strain-rate sensitivity on texture are not readily apparent
in pole figures, especially for y < 4. Quantitative means are needed to distinguish the trends.
For this purpose, the fractions of the total number of poles having each ideal texture orientation
were computed as a function of shear strain. A pole was said to belong to an ideal texture if
it was within 3° of an ideal orientation. Note that the A-fibre in these calculations includes both
partial fibres, A, and A,. Texture evolution for four combinations of work hardening %, and
latent hardening ratio ¢ is shown for ‘fully constrained’ shear in figure 8. For all four cases the
B-fibre evolves most rapidly and is predominant. The intensity of the A-fibre also increases
continuously, but at a slightly lower rate. The C-texture component does not begin to increase
until y & 2. o ) , .

Slip-system ‘self” hardening per se (i.e. h, = 0.0 against h, = 0.1) does not substantially
influence texture evolution, regardless of latent hardening. However, latent hardening does
have noticeable qualitative effects. For example, higher levels of latent hardening result in
stronger A, and B, textures. Latent hardening also causes the C-texture to begin evolving at
smaller strains. Strain-rate sensitivity also appears to have only minor effects upon texture
evolution for y < 4. However, if texture evolution is computed up to very large strains, e.g.
¥ = 30, one sees definite trends as shown in figure 9. Here we find for m = 0.005-0.05 that
texture evolves similarly up to ¥ = 9, but that the three ideal texture components are sharper
for lower strain rate sensitivities. Beyond ¥ & 9, it appears that the texture components each
undergo different transients whose ‘strain scale’ depends upon strain-rate sensitivity. The
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Ficure 8. Fractions of grains (i.e. poles) within the three ideal textures A fibre (0), B fibre (a), and C (+) as a
function of strain. Four cases illustrating the influence of strain hardening and latent hardening on texture
development are shown: 4, =0.0, ¢=1.0 (—); 4, =01, ¢=10 (———-); 4, =0.1, g=1.4 (-***); and
h,=0.0, ¢g=1.4 (—-—). In all cases m = 0.005 and the ‘489’ grain distribution was used.
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transients are most rapid for higher rate sensitivities. For example, the C-texture increases
abruptly at ¥ & 10 for m = 0.05, at y &~ 12 for m = 0.02, and at y & 15 for m = 0.005. The rate
of increase in the C-texture intensity is more pronounced for higher rate sensitivities. Similar
transients of the A-fibre texture begin at the same respective strain levels, e.g. the intensity
decreases at y 9 for m = 0.05, y & 11 for m = 0.02, and y ~ 14 for m = 0.005. Turning
attention to higher strain levels, the B-fibre also begins to decrease in intensity at y ~ 25 for
m = 0.05. Presumably the number of B poles would decrease at strains larger than 33 for
m = 0.02 and m = 0.005. There is concern whether calculations at such large strains are
meaningful because the grain shape is highly ‘distorted and no effects of grain shape are
accounted for in the present model. However/ by calculating textures for y > 10 we have been
able to see an effect of strain-raté sensitivity that is not apparent for y < 10. Later we show how
these very large strain calculations provide an interpretation of Swift-effect measurements at
elevated temperatures. We also note here that the motion picture films of Lowe & Asaro (1985)
indicate that a significant number of poles move into orientations within the A partial fibre
in the strain range just before the A-fibre exhibits its abrupt drop in intensity. This
development of A, poles seems to be the dominant cause, e.g. for m = 0.05, of the observed
increase in the A-fibre intensity in the range 5.0 2 ¥ 2 7.5. Perhaps also this A, development
has a role in precipitating the abrupt drop in the A-fibre intensity.

Our computed textures are compared with textures measured by Williams (1962) in copper
plates in figure 10. Williams’s tests were carried out in shear, rather than in torsion, and his pole
figures are among the most complete. Also, his copper plate was pretextured by a 209,
reduction in thickness during rolling. Williams’s starting texture is shown in figure 10a by his
plotted contours of X-ray intensity along with our computed texture for the ‘489’ grain
distribution subjected to a plane strain compression of the same amount. In the {111} pole
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Ficure 9. Fractions of grains (i.e. poles). within the three ideal textures A fibre (0), B fibre (a), and C (+) as a
function of strain for various strain rate sensitivities: m = 0.005 (——), m = 0.02 (~—--),and m = 0.05 (- - - *).

The common material parameters are b, = 0.0, ¢ = 1.0, and the ‘489’ grain distribution.
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Ficure 10. Initial and shear textures at various strains as predicted (shown by +) and as measured by Williams
(1962) on prerolled copper plates (shown by solid contour lines). (a) shows the initial texture predicted by
subjecting an initially isotropic aggregate to plane strain compression of 23 %,. The ‘489’ grain distribution was
used with material parameters k, = 0.0, ¢ = 1.0 and 7 = 0.005. (), (¢) and (d) show the measured and
computed textures after the pretextured aggregate has been subjected to ‘fully constrained’ shear to y = 0.54,
1.44, and 3.25, respectively.
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figures shown, both these textures are characterized by diffuse high-intensity horizontal bands,
and the qualitative comparison between them in this respect is very close. Also notice that
Williams’s data exhibit intensity peaks near the # x,-directions (the so-called brass rolling
texture) whereas our predictions do not. It is not clear whether this discrepancy arises because
of some inherent deficiency in the polycrystal model or whether it arises because plane strain
compression does not adequately describe rolling. In any case, the brass rolling component is
quickly annihilated at low shear strains. As the imposed shear strain is increased a shear texture
similar to those shown earlier develops, although the influence of the pretexture is felt up to
strains of at least the highest strain shown in figure 10, i.e. ¥ = 3.25. This particular comparison
was done by using the ‘fully constrained’ boundary conditions, which were chosen under the
assumption that in Williams’s tests the gauge sections (which were stubby key ways machined
into the rolled plate) were constrained against elongating either in the direction of shear or the
direction normal to the shear plane. We note also that the compression textures are plotted
against the x,, x, and x;-axes of subsequent shear. In both the measurements and the
calculations, the ideal texture components are slightly rotated counterclockwise about the
xg-axis; as the textures become sharper they rotate clockwise into nearly ideal orientations. This
rotation is most readily seen by the rotation of the A-fibre i mtensuy peak along the pole figure
circumference near the x,-direction. :

Looking ahead to the next section, the shear stress-strain behavxour calculated for this
pretextured material is shown i in figure 11, where it is compared with the behaviour of the

4

e /7o

-1 el Tyo /7o
-2 ! ] I )
0 1 2 3 4
t4
FIGURE 11. Shear stress—strain curves for the initially isotropic grain orientation distribution (-——-) and for the
distribution obtained after 23 %, compression (- - * *). The grain distributions and material parameters are as in

figure 10.

virgin material with the same initial grain distribution and the same material parameters.
Yielding begins at a slightly reduced shear stress but the qualitative behaviour of the curve of
T, against ¥ is similar over the strain range 0 <y < 3.6. The normal stresses are also
qualitatively similar except for the 7,; component which is initially negative. At strains larger
than about y 2 0.10 the only substantial difference is that normal stress component 7,, is
approximately 259, less for the prerolled material. These results show an interesting
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dependence of the phenomenology of normal stress development on initial textures that are
only slight departures from isotropic.

Another comparison of this type is shown in figure 12. The experimental pole figure, again
taken from Williams (1962), was obtained by first subjecting the specimen to a shear strain of
v = —1.38 (i.e. in the negative x,-direction) and then reversing the sense of shear until a strain
of y = 1.70 was achieved. The qualitative comparison between the computed and measured
textures is again very good and it is interesting to note that the influence of the pretexture
formed by shearing in the —x,;-direction is, as observed by Williams (1962), mostly lost by
reverse straining. The texture after reverse straining is indeed sharply defined by the strain of
v = 1.70. The A, bands expected during shear in the positive x,-direction are evident in the
measurements and predictions, along with the remnants of the A, texture formed during the
initial negative shear.

Ficure 12. The {111} pole figure for the case of reversed straining from y = —1.38 to y = 1.70 corresponding to
the experimental test of Williams (1962). Williams’s experimental results are shown by the solid contour lines.
The initial grain distribution, boundary conditions, and material parameters are as in figures 10 and 1.

3.2. Polycrystal stress—strain behaviour

We now examine in detail the deformation, i.e. constitutive, responses calculated along with
the textures shown previously. However, it is first useful to examine the response of special grain
orientations corresponding to the ideal textures described in §2.4. This exercise helps correlate
the predictions of deformation response with those of texture evolution.

3.2.1. Deformation response of ideally oriented polycrystals

The deformation responses are calculated for polycrystals, each having 31 grains whose
orientations are uniformly distributed entirely within one of the texture fibres A,, A,, or B,.
Also, calculations were made by combining two of the fibre distributions, with each fibre
distribution being constructed from 21 grains uniformly distributed about the angles « and 8
defined in §2.4, yielding a polycrystal with 42 grains. The response of a single grain having a
C-texture orientation is also calculated. These results are shown for ‘fully constrained’ and
‘unconstrained’ boundary conditions in figures 13 and 14, respectively. Looking first at the
‘fully constrained’ calculation in figure 13, one notes that for all grain orientation distributions

37 \ Vol. 328. A
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=< acting individually or in combination under ‘fully constrained’ boundary constraints. The +A stands for
E E A, whereas — A stands for A;; + A means A, or A,. Also, B stands for B,. Note that the B, and C ideal textures

produce no normal stress on the shear plane whereas A; produces a tensile stress. The material parameters used
are b, = 0.0, ¢ = 1.0, and m = 0.005.
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FiGure 14. Stretches along the x,, x, and x,-axes as a function of shear strain for the ideal textures subject to
unconstrained shear. Note that the ideal textures produce no stretch normal to the shear plane, i.e. produce
no ‘Swift’ effect. The notations and matcrial parameters used are the same as in figure 13.
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the stress components saturate within a shear strain of 0.2 as expected because the ideal texture
orientations are stable and the slip-system strengths saturate. The shear stress 7,, is largest for
the C-texture and smallest for the partial A-fibre textures. The B, fibre texture produces an
intermediate shear stress and the combination of A-fibre and B-fibre textures gives a shear stress
greater than that of the A-fibre alone, but less than that of the B-fibre. Similarly, mixtures of
A and B-fibre textures produce axial stresses 7,, and hoop stresses 7,, that are intermediate to
the stresses attained for individual texture components. The B, and C-textures give no axial or
hoop stresses. In contrast, the partial A-fibres produce a large hoop and axial stress whose signs
depend upon the type of fibre, e.g. for positive shear, an A, texture causes tensile hoop and axial
stresses. In this case, the saturated stress ratios 7,,/7,, and 7,,/7,, are ca. 0.8 and ca. 0.2,
respectively. With these results in mind, we will later examine results for ‘300’ and ‘489’ grain
polycrystals and be able to correlate changes in texture with the calculated variations in 7,,,
Ty and 7y, ‘

For ‘unconstrained’ boundary conditions, the shear stress response is identical to the
constrained case. The Fj; component of the deformation gradient behaves in a manner
analogous to 7,,, saturating within a strain of 0.2. For positive shear, the A, texture causes hoop
extension and the A, causes hoop contraction. Both the B, and C-textures by themselves
produce no hoop deformations. Thus, mixing of A; and B, results in a smaller effect even though
for the A-fibre, the normal stretches are small: less than 1.003. Interestingly, none of the ideal
textures produce any axial deformations: F,, is constant. This result suggests that the axial
stresses that are observed for torsion with fixed ends have origins that, at least in part, are
different from the axial elongations that are observed in experiments with free ends.

3.2.2. Deformation response of polycrystals with random grain orientation distributions

The effect of constraint on the strain-hardening behaviour of polycrystals constituted from
the ‘300’ grain distribution is shown in figure 15. For specimens subjected to constraints,
normal stresses develop and evolve with strain as shown. There is undoubtedly a significant
effect due to the finite number of grains that, in part, accounts for the minor oscillations of the
normal stresses. The shear stress against shear strain behaviour follows trends that in a sense
parallel those shown earlier for the textures. The behaviour of 7, against v is very similar for
the three constrained cases and displays a slight textural softening’ in the strain range
0.8 < v < 2.25. Here it should be recalled that the slip plane-strain hardening, specified by
equation (2.11), saturates after strains |y*| > 0.1. For the polycrystal this means that the
grains have become effectively ideally plastic after strain of about y = 0.2. On the other hand,
the ‘unconstrained’ specimen displays a continuous (textural) strengthening, of about the same
magnitude, in the strain range where the ‘constrained’ specimens all soften. In this case, at a
shear strain of ¥ & 2.4 a maximum is attained and 7,, begins to fall. Textural softening is
commonly reported for polycrystal analyses based on idealized rate-independent Taylor-type
models. However, the present results demonstrate that such behaviour depends not only on
initial grain distributions and imposed strains, but also on overall imposed constraint.

The behaviour of the normal stresses has some qualitative similarities to what was described
as background in §1.2 for an incompressible nonlinear elastic solid, e.g. for the ‘fully
constrained’ polycrystalline specimen 7,, is compressive in the strain range shown, although we
will see later that the normal stress on the shearing plane tends to become fensile at larger
strains. The normal stress 7,, is tensile for nearly all strains except in the range 0.2 <y < 0.9,
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but this behaviour, as will be shown in figure 16, is sensitive to the initial grain distribution.
The difference }(7,, —7,,) grows slowly with strain, and in fact nearly saturates, as does the
ratio (7,, —7,,)/7,, because 7,, nearly saturates. This is in marked contrast to the deformation
theory behaviour discussed in §1.2 for which (7, —7,,)/7,, would be expected to continuously

increase.
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Figure 15. Stress—strain behaviour for the 300’ grain distribution subjected to the four types of boundary
constraints: fully constrained torsion (———-), torsion with mandrel (- - - -), torsion with end constraint (o= ),
and unconstrained torsion (——-—). The material parameters are 4, = 0.0, ¢ = 1.0, and m = 0.005.
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=l§ FiGurE 16. Stress—strain behaviour for the ‘300’ (- -+ ) and ‘489’ (——-) grain distributions contrasting the effect
E - of slightly different initial grain distributions on the ‘fully constrained’ response. Note that the most significant

effect is on the normal stress 7,, along the direction of shear. The material parameters are as in figure 15.
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It is also of interest to note when one of the kinematical constraints is relaxed and replaced
by either the condition 7,, = 0 or 7,, = 0, the other normal stress becomes larger in magnitude.
This feature is predictable even within the context of nonlinear elasticity by the following
observation. It is found that with any of the sets of constraints considered here that there is no
trend for significant normal strains to develop in the x;-direction. This means, because the
overall deformation is nearly incompressible, that if either A, or F,, is fixed at 1.0 then no
normal strains will develop. Hence, the deformation is essentially ‘fully constrained’.
Then appealing to equations (1.12) applied to the ‘fully constrained’ case, when o, =0,
O = (T5) (dP/de,) cos 2y and oy, = (T3) dD/de,) cos 24, or a,, is twice as large in magnitude
as it would be if o, = 0. A similar argument applies for the case where 7, = 0. There is then
some rudimentary correspondence between the polycrystal model behaviour and a simple
deformation theory ; this is explored in more detail in connection with other phenomenological
theories in §4.2. ’

Figure 16 shows the influence of grain orientation distribution on stress—strain behaviour for
the case of a ‘fully constrained’ specimen. The strain-hardening behaviour itself is very similar
except for an approximately 7 %, difference in the shear stress at full yield. The normal stresses
are also similar and, as noted above, both 7,, and }(r,, —7,,) are positive over most of the strain
range. '

Figure 17 shows the influence of slip-system strain hardening on polycrystal strain hardening
and on the development of normal stresses. The influence of introducing a non-vanishing
asymptotic hardening or higher latent hardening is to raise the level of the shear stress—strain
curves without changing their characteristics otherwise. Although the small amount of
hardening given by 4, = 0.1 is seen to be sufficient to eliminate the decrease in 7,, because of
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FIGURE 17. Stress—strain behaviour for ‘fully constrained’ shéar of the ‘489’ grain distribution illustrating the effects
of strain hardening and latent hardening: %, = 0.0, ¢ = 1.0 ( ); k=01, ¢ = 1.0 (----); and A, = 0.1,
g=1.4 (). Inall three cases shown, m = 0.005. Note that a quantitative description of texture evolution for
these cases is provided in figure 8.
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the textural softening, the shear stress—strain curves are still concave-outwards from the
stress—strain origin. Similarly for the normal stresses, the principal effect of increasing the slip
system hardening is'to increase their magnitudes.

Figure 18 illustrates some of the trends that occur with increasing strain rate sensitivity. As
in the earlier quantitative texture analysis of figure 9, we show results for 0.005 < m < 0.05 and
for very large strains up to 35.0. To observe some interesting effects of viscosity, we also include
results for m = 0.2 and m = 0.5. When the shear strains are less than ¥ ~ 9 the behaviour of
7y, for all values of m in the range 0.005 < m < 0.05 is qualitatively similar except that yielding
occurs at lower stress levels for the more rate-sensitive materials. Also for 0.005 < m < 0.05, at
larger shear strains there occurs a rather abrupt textural shear strengthening, followed by an
eventual softening. The strengthening occurs at a strain of about ¥ = 10 for m = 0.05 but not
until a strain of y & 15 for m = 0.005. This strengthening can be understood in terms of the
texture transients shown in figure 9 and the ideal texture calculation results in figure 13.
Referring to figure 9, for m = 0.05 one notes an abrupt decrease in the fraction of A-fibre poles
aty & 9 and a sharp increase in the fraction of B-fibre and C poles beginning at v ~ 10. From
figure 13 we know that the grains having B-fibre and C-texture orientations produce the largest
shear stresses. Thus the 7,, transient appears to be a direct result of transients in texture
evolution. The same sort of analysis can be applied to the 7,, transient between vy = 1 and
v = 4. Here, as evidenced by figure 8 for 4, = 0.0, ¢ = 1.0 and m = 0.005, the C-texture
increases at y & 1.8 causing a slight increase in 7,, as evidenced by figure 18. At these smaller
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FiGuRE 18. Stress—strain behaviour for ‘fully constrained’ shear of the ‘489 grain distribution illustrating the
influence of very large strains and strain-rate sensitivity : m = 0.005 ( ),m =002 (-———-),m=0.05(-"""),
m=0.2 (—-—), and m = 0.5 (—-—). Plots of the normal stress 7,, are referred to the right-side axis. The
common material parameters are 4, = 0.0 and ¢ = 1.0
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strains the stress transients occur as the ideal textures initially form. At the larger strains sharp
textures have already formed and the transients are caused by ideal texture transitions. Direct
physical interpretation of this behaviour should be made cautiously owing to the extremely
large strains involved.

The axial stress 7,, is more sensitive to the evolution of texture than 7, and, in particular,
to texture transients. Referring for example to the case where m = 0.05, several transients are
apparent that can be qualitatively understood in terms of the relative intensities of A,, A, and
C-textures. First recall that the A, texture by itself produces a tensile axial stress, the A, texture
produces a compressive stress, and the C-texture produces no axial stress. Thus, the increase
in axial stress in the range 1.0 < ¥ < 5.0 can be understood to result in part from the increase
in the A, partial fibre texture. In the range 5.0 < v < 7.5 the axial stress decreases because of
the increase in the A, texture as noted earlier in §3.1. Beyond this strain the axial stress increases
and becomes tensile, reaching a maximum at y & 10. For 7.5 <y < 10.0 both the A, and
A, partial fibres decrease in intensity while the axial stress increases. In this strain range it is
inappropriate to interpret axial stresses solely in terms of the contributions of grains within
ideal textures because a large fraction of the grains are undergoing texture transitions and are
outside the ideal orientations. These ‘outside’ grains influence the constitutive response in a
way that depends sensitively on grain orientation. The constitutive response for the other
strain-rate sensitivities can be similarly analysed.

Increased strain-rate sensitivity in the range 0.005 < m < 0.05 does not change the
qualitative features of normal stress development but does very much decrease the magnitudes
of the stress, and as noted earlier, changes the transient strain scale. This is particularly
interesting in that large decrease in normal stress magnitudes occurs even though there is
relatively little change in shear strength level. An explanation in terms of ideal textures is not
apparent. It should also be noted that for the three levels of strain-rate sensitivity in this range
T4, becomes tensile. This transition is a strictly large strain phenomenon. As expected the
transition occurs first at a shear strain of y & 9 for m = 0.05 and at a larger strain y & 20 for
m = 0.005. Transitions of this type have been observed experimentally by Montheillet ¢t al.
(1984). They observe a similar decrease in the magnitude of axial stress and a change in strain
scale in copper with increasing temperature. One is led to speculate that their results are linked
to the increase in strain-rate sensitivity with increasing temperature.

In figure 18, stress—strain -behaviour is also shown for two cases of very large values of m that
are beyond those characteristics of low-temperature dislocation slip. As the material’s rate
sensitivity increases, the normal stresses are continuously reduced in magnitude and begin to
oscillate about zero. The shear stress also oscillates; this is most obvious for m = 0.5. As
previously shown, the ideal texture components become less sharp as the strain-rate sensitivity
is increased. In fact, for the very large strain-rate sensitivity considered here, we find that there
is almost no tendency for textures to form. The stress oscillations and the lack of texture
formation have interesting origins that are traced to the near vanishing of the plastic spin
defined in equation (2.6). For an Fcc crystal it may easily be shown that

wr = 122 .’;(a) W
a=1
vanishes for all stress states if m = 1.0. This means that the lattice spin W* introduced in
equation (2.7) is equal to the total spin W of the material. With m = 0.5 essentially the same
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result is true. The ideal texture components are crystallite orientations that undergo shear
without lattice rotation, but because WP = 0 lattice rotations are forced to occur by the
applied mode of deformation, i.e. by W, and hence ideal textures cannot form. Also, the
observed oscillations of stress are caused by these lattice rotations, which periodically give
geometrically harder and softer orientations.

3.3. The ‘Swift effect’

Under ‘unconstrained ’ shearing, where 7,, = 7,, = 0, the specimens undergo normal strains
as discussed in connection with the hyperelastic model of §1.2. The phenomenology of this is
shown in figure 19. For grain distributions that are initially nearly isotropic, there is extension
normal to the shearing plane as is evidenced by the figure. The effect depends on the initial
grain distribution although this dependence appears to decrease at larger shear strains. Note
also that increasing the rate sensitivity from m = 0.005 to m = 0.02 lessens the amount of axial
extension. The Swift effect is also very sensitive to boundary constraint. For the ‘torsion with
mandrel’ conditions the imposed constraint, i.e. Fj; = 1.0, limits the axial stretch F,, to the
small values shown. As previously mentioned, this is a result of near-incompressibility and the
fact that significant normal strains in the xg-direction have no tendency to develop: in all cases
this strain component has magnitude on the order of ca. 19,. Comparisons with Stout’s
experimental data (M. Stout, personal communication 1984) on a-brass tested in quasi-static
torsion at room temperature are also given in the figure. Note that Stout’s data are bounded
by the two sets of boundary conditions. More will be said about this below.

4.0 1.6

30 |-

el o Loty
A

Tar/To

1.0

FiGure 19. Shear stress 7,, and axial stretch F,, as a function of y for the ‘300’ grain distribution (- - - -) and the ‘489’
grain distribution (~——-) subject to the ‘unconstrained’ boundary condition set. The F,, against y response
for both distributions under the ‘mandrel’ constraints is also included and indicated by the letter ‘B’ on the
figure. The common material parameters are 4, = 0.0 and ¢ = 1.0. In all cases m = 0.005 except for the one
curve as indicated. The unpublished data of Stout (a) is also shown.
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In figure 20 the calculated Swift effect for ‘unconstrained’ shear is shown compared to
Stout’s data (which are the same data appearing in the previous figure) and Swift’s (1947)
original experimental data for copper tested in quasi-static torsion. Note that both Stout’s and
Swift’s data were obtained from torsion of thin-walled tubes. Their measurements are in close
correspondence, but both are about a factor of 3 below the predicted effect based on
‘unconstrained’ shear. We suggest therefore that the constraint of the ‘thick-walled’ flanges
serving as the gripping parts of thin-walled tube specimens retards the development of hoop
strains in the thin-gauge section and thus retards the development of plastic strains normal to
the shearing plane. Indeed, as mentioned in §1.1, it was noted by Swift (1947) that extensions
were larger for tube specimens than for solid rods where in the latter the material at the outer
diameters is constrained by the core material, which undergoes smaller shear strains.

ir

16 |

14

N

Fzz

12
11

L]
10 | 2 AN | ! )

Figure 20. Axial stretch £, for three calculations of fully reversed shear ( ) following the experiments of Swift
(1947). The material parameters are 4, = 0.0, ¢ = 1.0 and m = 0.005. The ‘489’ grain distribution and the
‘unconstrained”’ shear conditions are used. The unpublished data of Stout (a) and the data of Swift (o) are
shown for comparison. : «

Figure 20 also shows three examples of reversed shear that simulate the reverse torsion tests
of Swift (1947), which are also shown in the figure. Once again the phenomenology is very
similar but the calculated magnitudes are too high. As the direction of shear is reversed the
normal strains at first decrease; this is followed by an increase and an eventual near-parabolic
behaviour. Although one cannot tell from the figure, if the experimental curve of Swift is
plotted on a different scale so as to make more evident its features, then it is seen to exhibit
similar transients in F,, upon reversed shearing as just described. Figure 21a shows the shear-
stress response for the three reversed shear simulations. In all cases there is essentially no
perceptible Bauschinger effect for reverse yielding. At the strain levels shown in figure 214
reverse flow occurs initially with continued (slight) hardening at a level of magnitude consistent
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with the low level of hardening during forward straining. However, in all cases hardening is
accompanied by a slight (textural) softening. )

Texture development is shown during reverse straining by figure 215-d for the case of a
forward strain of y = 3.36. Figure 215 corresponds to a small reverse strain of 29, and
illustrates a texture that is very similar to that shown earlier in figure 64. Figure 21 ¢ shows that
after a reverse strain of about 2.52 the texture is substantially altered. One effect is a large
counterclockwise rotation of the texture such that poles that fit, at y = 3.36, within the bands
corresponding to the A, ideal texture component in quadrants 2 and 4 are shifted more closely
toward the A; bands in quadrants 3 and 1, respectively. This gross rotation of the texture as
a whole upon strain reversal is manifested in the observed transients of axial extension,

(a)

et

3 LY VYT P e T pn

Ficure 21. (a) Shear stress against shear strain for the three cases shown in figure 20. Also shown is the texture
evolution for the case of reverse straining from y = 3.36 to (§) v = 3.34, (¢) y = 0.84, and (d) y = —1.16.
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although it is interesting to note that the shear strength seems unaffected by this. At a shear
strain of y = —1.16 the texture has now become very similar to what it would have been had
deformation been unidirectional with shearing directed along the — x,-axis, and as a result, the
transients in axial extension subside. .

4. DiscUsSION
4.1. Polycrystal model studies

The simulations described above allow a number of correlations between texture evolution
and constitutive response to be made; some of these have already been presented, a few others
are described below. »

Experimental studies of texture evolution during large-strain shear have indicated that the
textures that form can indeed be described as a mixture of the three ideal textures defined in
§2.4. In particular, it has been noted by Montheillet ¢¢ al. (1984) that at strains greater than
v & 5 for copper twisted at room temperature there is a tendency for the C-component to
increase whereas the A, ideal texture decreases. Canova et al. (1984) have attempted to
simulate this behaviour using their implementation of the ‘method of relaxed constraints’
introduced by Honneff & Meeking (1978). The present results demonstrate, on the other-hand,
that such transitions are in fact a natural outcome of a finite strain, strain-rate-dependent model
such as ours. Figure 9 shows that when the strain-rate sensitivity is in the range corresponding
to 0.005 < m <0.05 the A, component undergoes large decreases as the C-component
undergoes increases. The effect is quite sensitive to the value of m; the strain levels where this
occurs are less with higher strain-rate sensitivity. Figure 13 further shows that the C-component
is characterized by a higher shear strength than the A, fibre texture, which correlates with the
textural strengthening observed in figure 18 at the shear strains where the A;— C transition
occurs. We note also that the intensification of the ideal C-texture component does, in fact,
occur as a result of grains whose orientations change from those within the A, fibre to those
within the ideal C-texture. This effect has been clearly illustrated in the motion picture films
of Lowe & Asaro (1985) where the transition appears as a continuous ‘stream’ of poles
migrating from orientations within the A, fibre texture to those within the C-texture. Also as
shown in figure 9, the B-component undergoes continuous increases, except in the case of high
strain-rate sensitivity m = 0.05, which is also in agreement with experiment for copper twisted
at elevated temperatures (Montheillet ¢t al. 1985).

The inclusion of rate sensitivity is shown to lead to textures that are more diffuse than those
predicted with rate-independent idealizations. A long-standing discrepancy between textures
predicted from rate-independent slip theories and those measured experimentally is that the
predicted textures are too sharp. Thus, the understanding of the effect of strain-rate sensitivity
is an important step toward resolving past discrepancies between theory and experiment.
Other causes of more diffuse textures are clearly important and should be evaluated in future
studies. Included in these are the non-uniform plastic strains and non-uniform slip modes that
develop within grains, especially at interfaces. This particular problem has currently been
studied quantitatively (Harren et al. 1988) via finite-element methods and the results provide
suggestions for including the effects of interfaces in initiating non-uniform slip in improved
models. :

Another interesting experimental observation that, to date, has been difficult to explain via

38-2
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simple polycrystal models is the transition from compressive to tensile normal stresses on the
shear plane (Montheillet ¢t al. 1985). This transition is also evident in figures 9 and 18 and can
be partly understood in terms of the ideal texture behaviour illustrated in figure 13. The model
calculations for the ideal textures show that the A, fibre texture in itself, or in combination with
the other two ideal textures, gives rise to a tensile stress on the shear plane; the B-fibre and C
ideal textures produce no normal stresses of this type. This suggests that the compressive stresses
that initially develop are caused by the collection of grains (acting together) that are not in any
of the three ideal textures that characterize the overall texture at large strains. Similarly, the
tensile stresses that occur at large strains must also be attributed to the collected effect of grains
not having ideal texture orientations. Comparing figures 9 and 18, it is clear that the tensile
stresses occur during texture transitions and are not caused by the tensile stress contribution of
the A, fibre texture. Peak tensile stresses occur while the fraction of grains with A, orientations
is decreasing and the fraction of grains with C-texture orientations is increasing. The motion
pictures of Lowe & Asaro (1985) have shown that a large number of grains simultaneously
have non-ideal orientations as they migrate together from A; orientations towards C
orientations. Note also that strain-rate sensitivity has an influence on this transition; as m
increases the strain at which 7,, first becomes tensile decreases. In addition, at ‘smaller’ strains,
e.g. Y < 15, the magnitude of 7,, is less for the more rate-sensitive materials.

We now present correlations of the ‘Swift effect’ for ‘unconstrained’ shear as illustrated in
figure 19 with the gross rotation of the developed texture as illustrated in figure 6d. Looking
at any of the figures 6a—c, the shear plane normal is in the x,-direction. Now, turning to
figure 64, one is led to say that the shear plane normal is located at ca. 7° counterclockwise from
the x,-axis for y = 3.60 because the pole figure exhibits a gross 7° (or 0.12 rad) rotation about
the x,-axis at this strain level. Because the pole figures 6a— are effectively the results of simple
shearing along the x,-axis, one speculates that the pole figure 64 corresponds to simple shearing
along an axis that is inclined at ca. 7° counterclockwise from the x;-axis. As it turns out, this
is very nearly true.

First, note that the ‘unconstrained’ axial extensions in figure 19 are represented fairly well
by the relation dE,/dy ~ 0.15, for 73 3. 4.1)
Next, to aid this discussion, introduce a coordinate system 7, x3, and x; whose axes are obtained
by rotating the x,, x,, x; system counterclockwise about the x,-axis by an angle @, which is
meant to be ca. 7°. Now, let F, be the rate of stretching along the xj-axis. One finds that

"3 = By — 79+ 0(9%), (4.2)

where the small angle approximation of ¢ has been used. Because we want to look at simple
shearing along these inclined axes, Fj, = 0 and hence

dFy,/dy = ¢. (4.3)

The observation (4.1) indicates that ¢ ~ 0.15 rad or ca. 8.6° should be true whereas figure 64
indicates ¢ ~ 7° or ca. 0.12 rad. If one examines the calculated F for the case at hand, e.g.
‘unconstrained’ shear of the ‘300’ grain distribution with 4, = 0.0, ¢ = 1.0, and m = 0.005 at
7 = 3.60, one finds that the deformation is very nearly simple shear on inclined axes defined

by ¢ = 0.13 rad or 7.7°. Hence, the angle of rotation ¢ of the pole figure and the rate of axial
stretching are closely correlated.
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These obervations have some important ramifications. The correlations of axial stress
development with pole figure rotations as performed by Montheillet et al. (1985) seem to be
a bit misdirected : our results indicate that axial strains are associated with texture rotations
whereas axial stresses are associated with textures that are more or less unrotated. These
observations on axial stretching also have interesting similarities to the ‘unconstrained’
hyperelastic model of §1.2. The polycrystal calculations indicate that the pole figure initially
exhibits ¢ = 0 and then quickly develops to ¢ ~ 7° after y 2 3. For y 2 3, the motion picture
films of Lowe & Asaro (1985) indicate that ¢ increases very slowly with increasing shear strain.
Hence, in a sense, equation (4.3) represents a sort of asymptotic condition for the polycrystal
model. Under this asymptotic condition of simple shearing on these inclined axes, a scribe line
initially parallel to the x,-axis will be oriented at about 7° above the x,-axis at large strains,
whereas at large strains for the hyperelastic model, this scribe line would lie 45° above the
x,-axis.

Influences of latent hardening on texture development and stress—strain response are shown
in figures 8 and 17. In general the tendency is for sharper textures to develop with higher latent
hardening ratios, at least for strains less than y X 4, as indicated by the stronger intensities of
the A, and B,-ideal textures. It is noteworthy that the shear textures are still well represented
by combinations of the ideal textures but with different intensities. As evidenced by figure 8,
the ‘shapes’ of the texture intensity curves are relatively unaffected by the latent hardening,
and thus the qualitative features of the strain hardening curves are similar, as shown in
figure 17. As mentioned earlier, the slip system strain hardening law given by equations (2.10)
and (2.11) leads to a saturation of slip system strength when &, = 0; with &, = 8.97, this
effectively means that saturation occurs at shear strains |y*| of about 0.1. The structure of the
strain hardening curves is thus a direct result of textural effects, and in particular the softening
in the curve of 7;, against y is a ‘textural softening’. Textural softening is offset by the
introduction of stronger strain hardening 4. ’ :

As mentioned in the Introduction, an aim of the present work is to provide a comprehensive
framework for analysing large-strain shear and for guiding the development of phenomeno-
logical theories that can in turn be used to analyse general types of large-strain deformation
processes. The latter include metal-forming processes and failure caused by strain localization
and ductile rupture. More complete analysis of the micro- and macromechanical phenomen-
ology of large-strain shear requires much more experimental study. This should include
more detailed studies of the evolution of textures as influenced by stress and strain state, as well
as by material properties. Correlations of texture and microstructure with constitutive response
are also needed. The framework given here, although comprehensive, is incomplete in that
mechanisms such as non-uniform slip within grains, and non-uniform material properties, are
not yet included. Future combined experimental and model studies will provide a quantitative
means of including such effects. Our models are, however, in a form to provide important
guidance for the development of phenomenological theories. As a first important step in this
direction we next present a comparison of the shear response predicted by a number of
phenomenological theories, including J;-corner theory and two kinematic hardening models,
with those of our physical model. We note that both corner theories and kinematic hardening
models have been used over the past several years to study problems related to shear
localization and necking and this provides a special impetus for correlating them with the
physical theory.
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4.2. Phenomenological studies

It is well known that the classical theory of the Prandtl-Reuss flow rule (which incorporates
an isotropically hardening smooth von Mises yield surface), i.e. J,-flow theory, is inconsistent
with the predictions of physically based, crystallographic slip models: rate-independent
crystallographic slip models predict the existence of corners or vertices on the yield surface. In
fact, Asaro & Needleman (1985) have used the rate-independent limit of their rate-dependent
polycrystal model to calculate off-set plastic strain yield surfaces of plastically strained
polycrystals, and the development of vertices (or at least areas of very high curvature) at the
yield surfaces’ load points was shown. The classical von Mises Prandtl-Reuss theory states that
the direction of the plastic rate of deformation DP is independent of the direction of the

. . - v . . 3
Jaumann rate of deviatoric Kirchhoff stress S, whereas in rate-independent crystallographic

slip models, the direction of DP depends upon that of g‘, and appropriately enough, this
dependence is called a vertex effect. The simplest vertex model of plasticity is the hypoelastic
deformation theory of Stéren & Rice (1975). In this theory, DP is not necessarily normal to
what would be the von Mises yield surface. Also, being a deformation theory, it is not directly
applicable to paths of plastic loading that exhibit significant deviation from proportionality,

i.e. to paths in which the direction of .g' differs significantly from that of the deviator of
Kirchhoff stress S. The J,-corner theory of Christoffersen & Hutchinson (1979) eliminates this
restriction. In this theory, the yield surface vertex is modelled as a stress space hypercone with
axis S. For plastic loading along paths that coincide or nearly coincide with proportional
loading, the response is taken as that of hypoelastic deformation theory. This régime of

v
behaviour is called ‘total loading’. Elastic unloading occurs when the direction of § lies in or
within the cone surface. For loading paths that lie between total loading and elastic unloading,

the Christoffersen-Hutchinson theory provides a region of transitional response where the
instantaneous moduli smoothly increase from the deformation theory moduli of the total
loading régime to the linear elastic moduli of the unloading fegime. The J,-corner theory has
been extended by Hutchinson & Tvergaard (1980) to include hyperelastic total loading
response.

The high curvature of the yield surface in the neighbourhood of its load point can be
described to some extent by the classical plasticity theory of kinematic hardening. Here the
hardening behaviour of the material is described by a constant radius von Mises yield surface
that translates through stress space as the plastic loading proceeds. Nagtegaal & de Jong (1982)
have shown that the traditional Prager—Ziegler form of this theory leads to oscillatory solutions
of stress against strain in simple shear for a monotonically hardening material. This oscillation
is a direct result of the evolution equation for the centre of the yield surface «, i.e. for the back

stress, where the Jaumann derivative of «, i.e. gz, is taken proportional to D®. Various authors
have taken the viewpoint that the choice of objective rate is the salient issue in the resolution
of this undesirable behaviour. Lee et al. (1983) have replaced & with a modified Jaumann
derivative of « where the spin measure is the rotation rate of the material line element that
instantaneously coincides with the maximum tensile eigenvector of . This approach eliminates
the oscillatory behaviour in simple shear, at least for the case of constant hardening modulus.
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Dienes (1979) has also taken this viewpoint. In the context of the simplest hypoelastic solid,
where the Jaumann rate of stress is related to the rate of deformation by the usual linear elastic
constants, the stress—strain response is also periodic in simple shear. Dienes eliminated this
oscillatory behaviour by replacing the Jaumann derivative of stress with a modified Jaumann
derivative (the Green-Naghdi derivative) whose spin measure is R*R”, where R is the rotation
tensor afforded by the polar decomposition theorem. In the context of kinematic hardening

theory, Key (1984) has replaced & with the Green—Naghdi derivative of & to eliminate the
oscillations in simple shear (again at least for the case of constant hardening modulus). A more

fundamental approach has been taken by Fressengeas & Molinari (1983). Along with
exploring the effects of different objective rates of back stress, they modify the form of the
evolution: the objective rate of « is taken proportional to a linear combination of D and «.
Obviously, once a suitable form of the evolution equation (or any constitutive equation for that
matter) has been established, it is a simple matter to express it in terms of any objective rate
that one may desire.

To compare the polycrystal predictions of §3 to predictions based on phenomenological
vertex-type descriptions, large-shear calculations have been performed with J,-corner theory
and two versions of kinematic hardening theory. In these calculations, attention is confined to
plane strain incompressible deformations and § may be interpreted as the deviator of Cauchy
stress. Within this context, the essential details of the three models are now presented.

The J,-corner theory total loading (or deformation theory) material is taken as hyperelastic.

The stress deviator is given by

2 do '
S=——(N,N,+¢,N,N,), 44
,yd,ye(l 1 1 2 2 2) ( )

€

where N, are unit eigenvectors of S and ¢, are the principal values of logarithmic strain. The
strain energy function is taken to depend only on the effective shear strain vy,:

?= J’Te(Ye) dye, 7=V S:8], 7v.=VI[2el+e)], (4.5)

where 7, is the effective shear stress. Hence, the deformation theory material is completely
described by a curve of 7, against .. Relations (4.4) and (4.5) may be cast in rate form as (see
Hill (1970)) v
D= C":S, (4.6)

where D is the rate of deformation. The elastic response is that of the simplest hypoelastic
material, i.e.

pr=Ly-cd 47
2 | .

where D° is the elastic rate of deformation and g is the elastic shear modulus. Using
D = D¢+ D? gives the plastic response for total loading:

DP=Cr:S, CP=Ci—C (4.8)

The angular measure 6 used to describe the transitional response of the material is

.. v
cosO=2:P, (S:CP:Sa=5, (5:C:8)P=cCr:S. (4.9)
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The material behaviour lies: within the total loading régime when 0 <6 < 6,, within
the transitional régime when 6, < @ < 6, and within the elastic unloading régime when
0, < 6 < m. The angle 6, is determined from

(g’c:C":a)icos 0, = ).:C":g'c, '§'c = cos B, S+7,sin B (N, N, + N, N,), (4.10)

where p. = arctan (T::E?) +n or B,=p, (4.11)

y

whichever is least. In (4.11), 7, is the value of 7, at initial yield, ** is the angle introduced
by Hutchinson & Tvergaard (1980) that defines the maximum allowable sharpness of the yield
surface vertex, and the inverse tangent function refers to the principal branch. The angle 6, is
taken as 6, = r(6, —3n), where 7 is a constant such that 0 < r < 1. The transition function f{6)
is

S10) = 4¢(9) {4(g(8)*+ (&' (8)} (4.12)
where prime denotes differentiation with respect to the indicated argument and
- $—0, )"}‘2 _ (g’(¢))
g(p) = {1 (0 G-I , 0 = ¢+ arctan 22(9)) (4.13)

where n > 2 and where the inverse tangent function returns values between 0 and 3n. The
plastic response in the transitional régime is given by

C* =3f"(0)QQ +1f (6){cot 6(C*— PP— QQ) + PQ + Q P} +£(6)C*
(4.14)
Q = Pcotf@—CP:2cosec, D"=C“:.§’.

The shear calculations have been carried out with g7 = 135° r = 0.5, and n = 3. These
constants have been used previously by Hutchinson & Tvergaard (1980) and Tvergaard ef al.
(1981). ,

In kinematic hardening theory, the direction of the plastic flow coincides with that of the
radial tensor r of the yield surface, i.e.

P
pr=tor r=S-a 31=v(@D:DY, (4.15)

y

where 77 is the effective plastic shear strain rate. In this theory, the plastic response is governed
by the compliances ‘
Ct= L l—l} rr (4.16)
47t \pu, p) ’

where p, is the slope of the curve of effective shear stress against effective shear strain. Two types
of back stress evolution have been used in the following calculations. The first type will be
referred to as F.M. (Fressengeas—Molinari) evolution. The second type will be referred to as
K (Key) evolution. Both forms have been considered previously by Fressengeas & Molinari

(1983), and the K form has been considered previously by Key (1984). The F.M. evolution
of back stress is given by v 1

o= BDD—'\—/EA‘)}g“, A = O, (4.17)

where the parameter 4 may be regarded as a damping constant. For rigid-plastic simple shear
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with constant tangent modulus g,, it is an elementary exercise to show that oscillatory solutions
of stress against strain are obtained if 4 < 24/3, and that S exponentially approaches a finite
limit (as the shear strain tends to infinity) if 4 > 24/3. For constant y,, 4 = 24/3 corresponds
to critical damping. Having chosen 4 (we have taken 4 = 40 in the following calculations),
application of the consistency condition to (4.17) yields

1/1 v 1 o 11 1) ¥
=—|=r:S+——A4r: =—{——=¢r:S. .18)
B .Ty(?_,gr S+\/3Ar a), P o7, U, ‘u}r S (4.18)

The plastic and elastic rates of deformation are given by

D° = C*:S, D°=Ce:S, (4.19)

where C* is as in (4.16) and C* is as in (4.7). The K evolution of back stress is given by

n=

r:
P
Ty Ve

where * denotes the Green—Naghdi derivative, e.g.

*
o =

Dr, , (4.20)

% =d—R-RT-a—a-R-R7, (4.21)

% \%
and where 92 may be determined from the second relation of (4.18) with § replacing S. Also,

% v
the plastic and elastic rates of deformation are given by relations (4.19) with S replacing S.
In each of the theories discussed above, it is necessary to describe the material hardening

characteristics in terms of an effective-stress—effective-strain curve. Persuant, two effective
shear stress-effective plastic shear strain curves have been calculated by means of two plane
strain (€; = 0) compression polycrystal simulations. The first polycrystal calculation used the
initial crystallite distribution with 196 grains (see §2.3), and the second used 489 grains. The
first of the two polycrystal calculations was presented previously by Asaro & Needleman
(198s), and the plane strain compression boundary conditions used for the two are given in
relations (3.32) of that paper. Both polycrystals are characterized by 4, = 0.0, ¢ = 1.0, and
m = 0.005. Not surprisingly, the simulations yield curves that may be fitted accurately to the
form '

Te = 7y+hoo 7§+ (Too_Ty) tanh {((hs_hoo)/(Tco_Ty)) 75}1 (422)

where 7, is as above, and where the effective plastic shear strain yg is y,—7, + #. When
calculating 7, and 7y, from the polycrystal results, S in (4.5) was taken as the deviator of
Kirchhoff stress, and ¢, and €, in (4.5) were taken as the logarithmic strains in the x,- and
x,-directions, respectively. Note that the use of the deformation-type measure of effective shear
strain (4.5) is valid here because in the two compression simulations the loading is (very nearly)
proportional : €, and ¢, closely correspond to the principal values of logarithmic strain. Also,
when calculating y? from the polycrystal results, g = 273.27, (which is the value of
L2415 = L35,3 = L3y, for the distribution with 489 grains) was used. The meanings of the
other parameters which appear in (4.22) may be ‘ascertained by identifying them with their
counterparts of the single-slip relation (2.10). The first polycrystal simulation may be fit closely

39 Vol. 328. A
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with the constants

7, = 1.501,, h,=22.87, 71,=2921, h,=0.01997, (4.23)
and the second with

T, = 1.607,, h,=2237, 7,=3.007, h,=0.004297, (4.24)

where 7, is as in §2.1. These two hardening curves are used in the following phenomenological
calculations: the material characterization (4.23) will be referred to as material I; and
characterization (4.24), material II. Both materials I and II are taken to have u = 273.27,.

The specific boundary conditions used in the phenomenological calculations are the
extension-shear conditions of §1.2: the form of the deformation gradient is as in (1.1), and the
boundary condition sets are those described therein. Subsequently, the condition ¢ = 1 will be
referred to as constrained; and the condition o,;, = 0,, = 0, unconstrained. The faces of the
material element (depicted in figure 1) defined by the unit normals +e, are taken as traction
free, which alludes to a traction free lateral surface on a torsion specimen. Under these
conditions, the stress deviator S corresponds to the Cauchy stress, which because of
incompressibility, corresponds to the Kirchhoff stress 1.

For the constrained case, the resulting curves of stress versus strain generated by J,-corner
theory are presented in figure 22. For comparison’s sake, results of two polycrystal simulations
are also included in the figure. Both polycrystal simulations are characterized by £, = 0.0,
¢ = 1.0, m = 0.005, and the ‘fully constrained torsion’ boundary condition set. After initial
yield, the phenomenological materials exhibit hyperelastic (total loading) response until about
v = 0.5, where the response becomes transitional and the stress—strain curves flatten out. Both
materials I and II give effectively the same normal stress response whereas their shear-stress
response differs by some (rather small) amount. Although not explicitly shown, the shear-
stress—shear-strain curves for the constrained corner theory materials are nearly coincident with
those of the unconstrained corner theory materials, as per the predictions of §3. As seen in
figure 22, the agreement with the polycrystal predictions is quite satisfactory.

The corresponding set of curves for the F.M. evolution version of kinematic hardening
theory are presented in figure 23. Again, the normal stress response of materials I and II is
effectively the same. The shear stress curves of these materials have been made quite close to
those of the polycrystals by proper choice of the value of the damping parameter A. As seen in
the figure, the magnitude of the normal stresses predicted by this model is somewhere between
those predicted by J,-corner theory and the classical J,-flow theory presented in §1.2 (which
would predict 7,, = 7,, = 0). The magnitude of the normal stresses may be increased by using
a smaller value of 4, but doing so would cause the shear stresses to dip down below those of
the polycrystals. As is the case for the corner theory materials, the 7,,—y curves of the F.M.
materials are nearly unaffected by the choice of boundary conditions, at least for 4 = 40.

For the unconstrained case, plots of extensional stretch ¢ against shear strain y for both
Jy-corner theory materials and F.M. evolution materials are given in figure 24. The polycrystal
curves of extensional stretch (which was referred to as F,, in §3) shown in the figure belong to
the same two polycrystals of figures 22 and 23, but here the ‘unconstrained torsion’ boundary
conditions are used. As in the constrained case, the corner theory predictions are in good
agreement with the polycrystals’, and the F.M. response is between those of J;-corner theory
and J,-flow theory.
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Frcure 22. Stress response under ‘ constrained’ shear for the two J,-corner theory materials, material I (- +-) and
material II (—--—), as described by equations (4.23) and (4.24), respectively. These are compared with the
response of the ‘300’ grain polycrystal (——) and the ‘489’ grain polycrystal (-—--) deformed by
‘constrained’ shear.
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Ficure 23. Stress response under ‘constrained’ shear for materials I (- -+-), and II (—:—) obeying the F.M.
version of kinematic hardening. The curves showing polycrystal response are the same as those in figure 22.
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Ficure 24. The *Swift effect’ for ‘unconstrained’ shear of materials I (- - - +) and IT (—-—) as predicted by J;-corner
theory and F.M. kinematic hardening theory. Curves showing the polycrystal response for the ‘300’ grain
distribution (——) and the ‘489’ grain distribution (—~--) are shown for comparison.

PHILOSOPHICAL
TRANSACTIONS
OF

Although the J,-corner theory predictions agree excellently with those of the polycrystal
model (especially out to about v = 2), experimental data for ¢ tend to lie much closer to the
F.M. prediction. As mentioned previously, the low experimental values of ¢ are probably
caused by constraints that act on the test specimen (it is difficult to remove such constraints in
practice) and one wonders if a totally constraint-free test specimen would increase ¢ to the
extent that is indicated by the polycrystal model. If this proves to be the case, then the value
of J,-corner theory for localization analysis of polycrystalline materials is evident. The main
difficulty in such analyses is the correct prediction of the initial mode of localization (which is
the dominant aspect of such problems). The localization modes probably establish themselves
at strain levels below 2, and hence, J,-corner theory would be useful for such predictions. Also,
the amount of computation required by the phenomenological model is much less than that

Y o

B required by a physically based polycrystal model.

- q y a phy y polycry

< S The stress—strain curves obtained from the K evolution version of kinematic hardening
S —~ theory are shown in figure 25. The polycrystal curves in the figure are the same as those in
= a figures 22 and 23. Even though the 7.—y%? relation (4.22) increases monotonically, the K-type
QO shear stresses drop rather abruptly after about y = 0.25. Given the strange behaviour of the
O shear stresses, it is quite surprising that the normal stress response provided by this model is not
= uw

all that bad, at least over the interval of shear strain considered. Contrary to the predictions
of the two preceding phenomenological models, and like those of the hyperelastic material of
§1.2, the K evolution material 7,,~y curves are quite sensitive to the choice of boundary
conditions. This effect is illustrated in figure 26. Also in figure 26, the K-type extensions for the
unconstrained case are compared to the polycrystal predictions. In this figure, the curves of the
polycrystalline response are the same as those appearing in figure 24, and as is indicated, this
model overestimates these extensions by more than an order of magnitude. Perhaps the large
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normal (especially extensional) effects, the abrupt drop in shear stress, and the shear-stress
sensitivity to boundary conditions all could be reduced by writing the back stress evolution
equation in the form of (4.17), with % replacing x. '

4 e

-2}
-3 L l ) J
0 1 2 3 4
Y
Ficure 25. Stress response under ‘constrained’ shear for materials I (- - +) and II (—-—) obeying the K version

of kinematic hardening. The curves depicting the polycrystal responses are the same as those in figures 22
and 23. - ’

0 05 1.0 1.5 - 20 2.5 30 35

Ficure 26. The ‘Swift effect’ for ‘unconstrained’ shear of materials I (+-+-) and II (—:—) as predicted by K
kinematic hardening theory. Curves for ‘constrained’ shear are also shown to illustrate the sensitivity to
boundary conditions of the K shear stress response. The curves showing the polycrystal responses are the same
as those in figure 24.

40 Vol. 328. A
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To investigate the rather strange solutions provided by the K version of kinematic
hardening, we now turn to some simple cases for which closed form solutions may be found.
Specifically, attention is restricted to the constrained case and the material is taken as rigid-
plastic so that the only non-vanishing components of D® are DY, = D}, = }y. Using y2 =7,

* v
equations (1.8) and (1.9) with e =1, (4.15), the second of (4.18) with § replacing S and
J—> 00, (4.20) and (4.21), one obtains the set of ordinary differential equations

Y\ dir, [, L Y \dT, ( 72) :
(1+4) T3 1+4 o= 144 (4.25))
T =T +(1+7 )dT“ | (4.25,)
4)dy 2

subject to the initial conditions 7,, = 7, and 7,;, = 0 at y = 0. Substitution of the independent
variable 2arctan (}y) into (4.25,) yields a second-order ordinary differential equation with
constant coefficients that is easily solved by the method of variation of parameters. Hence, for
any tangent modulus z,(y), the solution to equations (4.25) may be written down in integral
form. We will look at three forms of u,(7v) that yield easily calculable integrals, specifically

Te=T,+17, M=
Te=Ty VY, o m=k2vy, ) (4.26)
Te=Ty+hin(1+y), p,=h/(1+7y),

which will be referred to as linear, power law, and logarithmic materials, respectively. These
three 7,~y? relations are plotted in figure 27 with u7 = 0.27,, k = 0.47, and /& = 0.4977,. The
solutions of (4.25) for the linear, power law, and logarithmic materials are

Ty =Ty +'§—:{4f12 arctany +2yIng,—q, v}, T = %{47 arctan}y—2¢,1In g, —v?,
© )

k k ;
Ty = Tyt ;;{44 arctan ¢; +¢;Inge— ¢,V 7}, T = E{— gsarctan gy +¢,Ings—yv/'v},

h ok '
Tor = Ty"'gi{"‘%-amtan%'y"’qs Ing, +%q91n b Tu= 5_91{2% araan%’)"‘f%‘h Ing,—g0ln 411}a1

(4.27,)
respectively, with
=1+ g2 = 1—37%, G =1=7=9% q=1+y=
2Vy _y+2/y+2

g5 = s =—4—8y+y%, ge=—4+2y+yh ) (4.27)

2=y T VA
9o =12—16y—3y% ¢,y =—4-3y+y%, q,=1+7.

Note that the arctan ¢, in (4.27) returns values between i1t and = for y > 2. In all other cases
the inverse tangent function refers to the principal branch. Plots of the solutions (4.27) are

shown in figure 28, where the constants given just below (4.26) have been used. Note also that
the 7,,—y curve for the power-law material exhibits the most pronounced dipping behaviour
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FiGure 28. Stress response under constrained ’ shear for materials obeying K kinematic hardening theory and using
the linear ( ), power law (- ), and logarithmic (-——-) hardening curves shown in figure 27. Note that
Ty = Ty, here. ‘ ‘ :
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whereas that for the logarithmic material dips to a somewhat lesser degree. Referring to
figure 27, it is seen that the 7,~y2 curve for the power-law material exhibits higher curvature
than does that of the logarithmic material. This dipping behaviour is attributable to this rather
high curvature. The curve (4.22) exhibits a fairly abrupt knee around yg = 0.25. Hence, the
high curvature exhibited by the knee of relation (4.22) is the cause of the (undesirable) abrupt
drop in shear stress shown in figure 25. The undesirable behaviour of the constrained K-type
solutions is a transient effect: for large vy the relations (4.27) exhibit the behaviour

Ta—Ty ~ WY, Tu~4ulny,
T —Ty ~ kV'Yy, Ty kR, o (4.28)
Ta—Ty ~ kiny, 7,,>%h(T—In2),

for the linear, power law, and logarithmic materials, respectively. Note that in every case the
Ty,—Y curve approaches the behaviour of the corresponding 7,—y% curve. This is also true for
the constrained materials of figure 25: for example, the K-type 7,,—y curve for material I
reaches a minimum of about Ty, = 0.37, at around y = 10, and then exhibits a constant slope
of k, for values of y larger than about 25. The 7,,—y curve for this material appears to
have a constant value of about 7,, = 0.357, for values of y greater than ca. 60. The longest
transient is exhibited by the power-law material where 7,, reaches 90 9, of its asymptotic value
at around y = 570. ‘
Hopefully, the reader has been left with the impression that the practice of merely replacing
% (in the traditional Prager—Ziegler form of back stress evolution) by some other objective rate
of @ is a rather precipitous fix. As shown here, the K form would appear to be adequate if one
only looked at the case of constant tangent modulus, but in fact this form is highly sensitive to
the shape of the 7.—y? curve (and hence to the shape of the uniaxial stress—strain relation).
Obviously, the use of kinematic hardening relations in more complex problems of non-
homogeneous deformation requires that the user be familiar with the behaviour of the
particular evolution-hardening description under various simple modes of homogeneous

deformation.
elormation 4.3. Closing remarks

In this paper we have examined the mechanics of shear from several viewpoints: those of
classical macromechanics and those of our micromechanical polycrystal model.

Within the framework of macromechanics, a ‘textbook’ introduction to the shear problem
was given that highlighted the differences in normal stress—strain response as predicted by the
classical hyperelastic and J,-flow theories. As illustrated by our polycrystal calculations and by
the experiments of others, the constitutive response of polycrystalline materials lies somewhere
between those predicted by the two classical theories. In this regard, more recent
phenomenological models, i.e. J,-corner theory and F.M. kinematic hardening theory,
have been shown to describe more adequately polycrystalline response, whereas the description
afforded by the K kinematic hardening theory was shown to be inadequate. These
inadequacies proved to be related to the curvature exhibited by the material’s effective-
stress—effective-strain relation. :

Within the framework of micromechanics, several important observations and correlations
have been made. Experimentally observed texture transitions such as those described in §3.1
have been predicted by our model and have been shown to be related to the overall response
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of the aggregate. We have found that the gross rotations exhibited by the texture components
are related to the normal strain response of the polycrystal as a whole, whereas the overall
normal stress response is associated with textures that are more or less unrotated. Consistent
with these observations, our calculated axial strain transients of figure 20 correspond to the
gross texture rotations depicted in figure 21b-d. These transients are also observed
experimentally. Although our calculated textures have a tendency to be too sharp, the
decreased magnitude of plastic spin with increased strain-rate sensitivity has been shown to be
at least partly responsible for the more diffuse textures that are characteristic of experimental

Y 4

__J observation. We have also found that increasing the strain-rate sensitivity captures some of the

< - phenomena observed in experiments done at elevated temperatures.
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